Improved estimation in a contingency table: independence structure
Gupta, A.K.; Saleh, A.K.M.E.; Sen, P.K.
Journal of the American Statistical Association 84(406): 525-532
1989
ISSN/ISBN: 0162-1459 Accession: 075850917
PDF emailed within 1 workday: $29.90
Related References
Kalinin, V.M.; Shalaevskii, O.V. 1975: 2As a criterion of independence in a contingency table Journal of Mathematical Sciences 3(3): 360-380Weiyin, L.O.H. 1989: Bounds on the size of the χ2-test of independence in a contingency table Annals of Statistics 17(4): 1709-1722
Albert, J.H. 1990: A bayesian test for a two-way contingency table using independence priors Canadian Journal of Statistics 18(4): 347-363
Nandram, B; Bhatta, D; Sedransk, J; Bhadra, D 2013: A Bayesian test of independence in a two-way contingency table using surrogate sampling Journal of Statistical Planning and Inference 143(8): 1392-1408
Kuroda, M.; Hashiguchi, H.; Nakagawa, S. 2009: Computing p-values in conditional independence models for a contingency table Computational Statistics 25(1): 57-70
Kwak, S.; Kim, D. 2012: Bayesian Test of Quasi-Independence in a Sparse Two-Way Contingency Table Communications for Statistical Applications and Methods 19(3): 495-500
Broderick, O. Oluyede 1994: Test of Independence Against a Class of Ordered Alternatives in an R C Contingency Table Biometrical Journal 36(8): 935-951
Weiyin, L.O.H.; Xujie, Y.U. 1993: Bounds on the size of the likelihood ratio test of independence in a contingency table Journal of Multivariate Analysis 45(2): 291-304
Bohning, D.; Holling, H. 1986: On minimizing chi-square distances under the hypothesis of homogeneity or independence for a two-way contingency table Statistics and Probability Letters 4(5): 253-258
Cohen, A.; Gatsonis, C.; Marden, J.I. 1983: Hypothesis testing for marginal probabilities in a 2×2×2 contingency table with conditional independence Journal of the American Statistical Association 78(384): 920-929
Takai, K.; Kano, Y. 2008: Test of independence in a 2 x 2 contingency table with nonignorable nonresponse via constrained EM algorithm Computational Statistics and Data Analysis 52(12): 5229-5241
Takai, K.; Kano, Y. 2008: Test of independence in a contingency table with nonignorable nonresponse via constrained EM algorithm Computational Statistics-Data Analysis 52(12): 5229-5241
Taneichi, N.; Sekiya, Y.; Toyama, J. 2020: Improvement of the test of independence among groups of factors in a multi-way contingency table Japanese Journal of Statistics and Data Science 4(1): 181-213
Lin, Y.; Lipsitz, S.R.; Sinha, D.; Fitzmaurice, G.; Lipshultz, S. 2018: Exact Bayesian p-values for a test of independence in a 2 × 2 contingency table with missing data Statistical Methods in Medical Research 27(11): 3411-3419
Akritas, M.G.; Clogg, C.C. 1991: Tests of independence for bivariate data with random censoring a contingency table approach Biometrics 47(4): 1339-1354
Oluyede, B.O. 1994: A modified chi-square test of independence against a class of ordered alternatives in anrx c contingency table Canadian Journal of Statistics 22(1): 75-87
Good, I. 1986: C275. the maximum of a bayes factor against "independence" in a contingency table, and generalizations to higher dimensions Journal of Statistical Computation and Simulation 26(3-4): 312-316
Lee Ci, C.; Shen, S.Y. 1994: Convergence rates and powers of six power-divergence statistics for testing independence in 2 by 2 contingency table Communications in Statistics. Theory and Methods 23(7): 2113-2126
Tsumoto, S.; Hirano, S. 2009: Statistical Independence and Determinants in a Contingency Table – Interpretation of Pearson Residuals based on Linear Algebra – Fundamenta Informaticae 90(3): 251-267
Lin, J-Jiuan.; Chang, C-Hui.; Pal, N. 2015: A revisit to contingency table and tests of independence: bootstrap is preferred to Chi-square approximations as well as Fisher's exact test Journal of Biopharmaceutical Statistics 25(3): 438-458