Improved unbiased estimators in adaptive cluster sampling
Dryver, A.L.; Thompson, S.K.
Journal of the Royal Statistical Society. Series B, Statistical Methodology 67: 157-166
2005
ISSN/ISBN: 1369-7412 Accession: 075855116
PDF emailed within 1 workday: $29.90
Related References
Salehi, M.M.; Seber, G.A. 2002: Theory and Methods: Unbiased estimators for restricted adaptive cluster sampling Australian-New Zealand Journal of Statistics 44(1): 63-74Lin, F.-Min; Chao, C.-Tai 2014: Variances and variance estimators of the improved ratio estimators under adaptive cluster sampling Environmental and Ecological Statistics 21(2): 285-311
Younis, F.; Shabbir, J. 2018: A Class of Hartley-Ross-Type Estimators for Population Mean in Adaptive and Stratified Adaptive Cluster Sampling Iranian Journal of Science and Technology, Transactions A: Science 43(4): 1619-1627
Arthur, L. Dryver; Chang-Tai Chao 2007: Ratio estimators in adaptive cluster sampling Environmetrics 18(6): 607-620
Jozani, M.J.; Majidi, S.; Perron, F. 2012: Unbiased and almost unbiased ratio estimators of the population mean in ranked set sampling Statistical Papers 53(3): 719-737
Martı́n H. Félix-Medina 2000: Analytical expressions for RaoBlackwell estimators in adaptive cluster sampling Journal of Statistical Planning and Inference 84(1-2): 221-236
Dryver, A.L. 2003: Performance of adaptive cluster sampling estimators in a multivariate setting Environmental and Ecological Statistics ch; 10(1): 107-113
Tapan, K. Nayak 2003: Finding optimal estimators in survey sampling using unbiased estimators of zero Journal of Statistical Planning and Inference 114(1-2): 21-30
Haq, A.; Brown, J.; Moltchanova, E. 2015: Improved best linear unbiased estimators for the simple linear regression model using double ranked set sampling schemes Communications in Statistics - Theory and Methods 45(12): 3541-3561
Chang-Tai Chao; Arthur, L. Dryver; Tzu-Ching Chiang 2011: Leveraging the RaoBlackwell theorem to improve ratio estimators in adaptive cluster sampling Environmental and Ecological Statistics 18(3): 543-568
Mohammad Salehi, M. 2003: Comparison between Hansen-Hurwitz and Horvitz-Thompson estimators for adaptive cluster sampling Environmental and Ecological Statistics ch; 10(1): 115-127
Mohammad Mohammadi, M Salehi, J. N. K. Rao 2014: Bootstrap confidence intervals for adaptive cluster sampling design based on Horvitz Thompson type estimators Environmental and Ecological Statistics 21(2): 351-371
de Paschal, J.N. 1961: Unbiased Ratio Estimators in Stratified Sampling Journal of the American Statistical Association 56(293): 70-87
Singh, P.; Srivastava, A.K. 1980: Sampling schemes providing unbiased regression estimators Biometrika 67(1): 205-209
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 2010: Calibrated linear unbiased estimators in finite population sampling Journal of Statistical Planning and Inference 140(3): 652-658
Singh, G.; Prasad, S.; Majhi, D. 2012: Best linear unbiased estimators of population variance in successive sampling Model Assisted Statistics and Applications 7(3): 169-178
Sherlock, C.; Thiery, A.H.; Lee, A. 2017: Pseudo-marginal Metropolis Hastings sampling using averages of unbiased estimators Biometrika 104(3): 727-734
Sullivan, W.P.; Morrison, B., J.; Beamish, F.W., H. 2008: Adaptive cluster sampling Estimating density of spatially autocorrelated larvae of the sea lamprey with improved precision Journal of Great Lakes Research 34(1): 86-97
Huang, K. 2009: Unbiased estimators of mean, variance and sensitivity level for quantitative characteristics in finite population sampling Metrika 71(3): 341-352
Wan, A; Chaturvedi, A; Zou, G 2003: Unbiased estimation of the MSE matrices of improved estimators in linear regression Journal of Applied Statistics 30(2): 173-189