Local and hyperspherical mode approximations to resonances in collinear atom-diatom reactions
Kulander, K.C.; Manz, J.; Schor, H.H.R.
The Journal of Chemical Physics 82(7): 3088-3099
1985
ISSN/ISBN: 0021-9606 Accession: 076419602
PDF emailed within 1 workday: $29.90
Related References
Ohsaki, A.; Nakamura, H. 1990: Hyperspherical coordinate approach to atom-diatom chemical reactions in the sudden and adiabatic approximations Physics Reports 187(1): 1-62Aquilanti, V.; Cavalli, S.; Laganà, A. 1982: Hyperspherical adiabatic description of interference effects and resonances in collinear chemical reactions Chemical Physics Letters 93(2): 179-183
Tolstikhin, O.I.; Nakamura, H. 1998: Hyperspherical elliptic coordinates for the theory of light atom transfer reactions in atom-diatom collisions The Journal of Chemical Physics 108(21): 8899-8921
Kamisaka, H.; Tolstikhin, O.I.; Nakamura, H. 2004: Full Quantum Dynamics of Atom Diatom Chemical Reactions in Hyperspherical Elliptic Coordinates The Journal of Physical Chemistry A 108(41): 8827-8839
Schatz, G.C.; Ross, J. 1977: Franck–Condon factors in studies of dynamics of chemical reactions. I. General theory, application to collinear atom–diatom reactions The Journal of Chemical Physics 66(3): 1021-1036
Halavee, U.; Shapiro, M. 1976: A collinear analytic model for atom–diatom chemical reactions The Journal of Chemical Physics 64(7): 2826-2839
Gutschick, V.P.; McKoy, V.; Diestler, D.J. 1970: Calculation of Transition Probabilities for Collinear Atom–Diatom and Diatom–Diatom Collisions with Lennard‐Jones Interaction The Journal of Chemical Physics 52(9): 4807-4817
Nakamura, M. 1991: Product rotational state distribution in collinear-favored atom-diatom chemical reactions The Journal of Chemical Physics 95(6): 4102-4111
Nalewajski, R.F.; Pastewski, R. 2009: Normalized kinetic field potentials for the atom-diatom reactions. Testing the collinear surfaces International Journal of Quantum Chemistry 20(S 15): 595-610
Billing, G.D. 1984: Quantum-classical reaction path model for chemical reactions. I: Theory and collinear atom-diatom case Chemical Physics 89(2): 199-218
Warehime, M.; Alexander, M.H. 2014: A MATLAB-based finite-element visualization of quantum reactive scattering. I. Collinear atom-diatom reactions Journal of Chemical Physics 141(2): 024118
Shoemaker, C.L.; Wyatt, R.E. 1982: Theory of resonances in three‐dimensional chemical reactions. II. Application to a model atom–diatom reaction The Journal of Chemical Physics 77(10): 4994-5008
Romelt, J. 1983: Prediction and interpretation of collinear reactive scattering resonances by the diagonal corrected vibrational adiabatic hyperspherical model Chemical Physics 79(2): 197-209
Mrugala, F.; Romelt, J. 1987: A generalized log-derivative method for the treatment of asymmetric collinear reactions in hyperspherical coordinates Chemical Physics 118(2): 295-312
Lepetit, B.; Launay, J.M.; Le Dourneuf, M. 1986: Quantum study of electronically non-adiabatic collinear reactions. I: Hyperspherical description of the electronuclear dynamics Chemical Physics 106(1): 103-110
Koppel, L.M.; Lin, J. 1973: DW‐variational study of collinear atom‐diatom collisions The Journal of Chemical Physics 58(5): 1869-1876
Penly, R.T.; Hutchinson, J.S.; Wyatt, R.E. 1980: Pattern prediction in collinear atom-diatom trajectories Chemical Physics Letters 69(2): 255-259
Snider, N. 1990: Energy transfer in classical, collinear atom-diatom collisions Chemical Physics Letters 168(1): 91-95
Bisseling, R.H.; Kosloff, R.; Manz, J.; Mrugaa, F.; Romelt, J.; Weichselbaumer, G. 1987: Lifetimes of local and hyperspherical vibrational resonances of ABA molecules The Journal of Chemical Physics 86(5): 2626-2638
Almeida, R. 1997: The two-dimensional minimum error method: the collinear atom-diatom collision Journal of Molecular Structure: THEOCHEM 390(1-3): 39-46