Monolithic modelling of electro-mechanical coupling in micro-structures
Rochus, V.; Rixen, D.J.; Golinval, J.C.
International Journal for Numerical Methods in Engineering 65(4): 461-493
2006
ISSN/ISBN: 0029-5981
Accession: 076713352
PDF emailed within 1 workday: $29.90
Related References
Ito, R.; Wakui, M.; Sameshima, H.; Hu, F.R.; Hane, K. 2010: Monolithic micro-fabrication of Si micro-electro-mechanical structure with GaN light emitting diode Microsystem Technologies 16(6): 1015-1020Cohen, N.; Menzel, A.; deBotton, G. 2016: Towards a physics-based multiscale modelling of the electro-mechanical coupling in electro-active polymers Proceedings. Mathematical Physical and Engineering Sciences 472(2186): 20150462
Wong, J.; Göktepe, S.; Kuhl, E. 2013: Computational modeling of chemo-electro-mechanical coupling: a novel implicit monolithic finite element approach International Journal for Numerical Methods in Biomedical Engineering 29(10): 1104-1133
Chen, Z.; Wang, P.; Chang, H-Chia. 2005: An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays Analytical and Bioanalytical Chemistry 382(3): 817-824
Ong, E.T.; Lee, K.H.; Lim, K.M. 2003: Singular elements for electro-mechanical coupling analysis of micro-devices Journal of Micromechanics and Microengineering 13(3): 482-490
Jun, C.H.E.N.; Guowei, M.A. 2006: Modelling deformation behaviour of polyelectrolyte gels under chemo-electro-mechanical coupling effects International Journal for Numerical Methods in Engineering 68(10): 1052-1071
Rosenblatt, F.; Morrison, J.F.; Iannucci, L. 2008: Modelling Electroactive Polymer (EAP) Actuators : Electro-Mechanical Coupling using Finite Element Software Electroactive Polymer Actuators and Devices (San Diego Ca 2008) 6927: 692712.1-692712.10
Rantakari, P.; Malmqvist, R.; Samuelsson, C.; Leblanc, R.; Smith, D.; Jonsson, R.; Simon, W.; Saijets, J.; Baggen, R.; Vahaheikkia, T. 2011: Wide-band radio frequency micro electro-mechanical systems switches and switching networks using a gallium arsenide monolithic microwave-integrated circuits foundry process technology Iet Microwaves, Antennas and Propagation 5(8): 948-955
Ham, S.; Popovics, J.S. 2015: Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures Sensors 15(4): 9078-9096
Gauthier, R.C.; Tait, R.N.; Ubriaco, M. 2002: Activation of microcomponents with light for micro-electro-mechanical systems and micro-optical-electro-mechanical systems applications Applied Optics 41(12): 2361-2367
Shi, F.; Ramesh, P.; Mukherjee, S. 1995: Simulation methods for micro-electro-mechanical structures (MEMS) with application to a microtweezer Computers and Structures 56(5): 769-783
Abazari, A.M.; Safavi, S.M.; Rezazadeh, G.; Villanueva, L.G. 2015: Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures Sensors 15(11): 28543-28562
Cho, H.; Yoon, M.; Park, J.Y. 2016: Radio Frequency Micro-Electro-Mechanical System Capacitive Shunt Switch using Actively Formed Wrinkled Hinge Structures Journal of Nanoscience and Nanotechnology 16(11): 11425-11428
Lee, C.Y.; Lee, S.J.; Shen, C.C.; Yan, W.M.; Weng, F.B.; Jung, G.B.; Lin, C.H. 2009: Fabrication of flexible micro-sensors and flow field of stainless steel-based micro-reformer by micro-electro-mechanical-systems process Scientific Advances in Fuel cell Systems. Workshop 193(1): 150-154
Nie, F.Q.; Macka, M.; Barron, L.; Connolly, D.; Kent, N.; Paull, B. 2007: Robust monolithic silica-based on-chip electro-osmotic micro-pump Analyst (London 1877. Print) 132(5): 417-424