# Nekhoroshev stability at L4 or L5 in the elliptic-restricted three-body problem -application to Trojan asteroids

##### Lhotka, C.; Efthymiopoulos, C.; Dvorak, R.

#### Monthly Notices of the Royal Astronomical Society 384(3): 1165-1177

#### 2008

**ISSN/ISBN: 0035-8711**Accession: 076788830

##### Article/Abstract emailed within 1 workday

*Payments are secure & encrypted*

#### Related References

Efthymiopoulos, C. 2004:**Nekhoroshev stability estimates for different models of the Trojan asteroids**

*Proceedings of the International Astronomical Union 2004(IAUC 197): 195-204*

Efthymiopoulos, C. 2005:

**Formal Integrals and Nekhoroshev Stability in a Mapping Model for the Trojan Asteroids**

*Celestial Mechanics and Dynamical Astronomy 92(1-3): 29-52*

Efthymiopoulos, C.; Sandor, Z. 2005:

**Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion**

*Monthly Notices of the Royal Astronomical Society 364(1): 253-271*

Cellett, A.; Ferrara, L. 1996:

**An application of the Nekhoroshev theorem to the restricted three-body problem**

*Celestial Mechanics-Dynamical Astronomy 64(3): 261-272*

Giorgilli, A.; Delshams, A.; Fontich, E.; Galgani, L.; Simo, C. 1989:

**Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem**

*Journal of Differential Equations 77(1): 167-198*

Peng, H.; Xu, S. 2015:

**Stability of two groups of multi-revolution elliptic halo orbits in the elliptic restricted three-body problem**

*Celestial Mechanics and Dynamical Astronomy 123(3): 279-303*

Celletti, A.; Froeschlé, C.; Lega, E. 2004:

**Frequency analysis of the stability of asteroids in the framework of the restricted three-body problem**

*Celestial Mechanics and Dynamical Astronomy 90(3-4): 245-266*

Oshima, K.; Yanao, T. 2015:

**Jumping mechanisms of Trojan asteroids in the planar restricted three- and four-body problems**

*Celestial Mechanics and Dynamical Astronomy 122(1): 53-74*

Makó, Z. 2014:

**Connection between Hill stability and weak stability in the elliptic restricted three-body problem**

*Celestial Mechanics and Dynamical Astronomy 120(3): 233-248*

Broucke, R. 1969:

**Stability of periodic orbits in the elliptic, restricted three-body problem**

*AIAA Journal 7(6): 1003-1009*

Érdi, B.; Forgács-Dajka, E.; Nagy, I.; Rajnai, R. 2009:

**A parametric study of stability and resonances around L 4 in the elliptic restricted three-body problem**

*Celestial Mechanics and Dynamical Astronomy 104(1-2): 145-158*

Kribbel, J.; Dvorak, R. 1987:

**Stability of periodic resonance-orbits in the elliptic restricted 3-body problem**

*Celestial Mechanics 43(1-4): 391-398*

Liu, B.; Zhou, Q. 2020:

**Linear stability of elliptic relative equilibria of restricted four-body problem**

*Journal of Differential Equations 269(6): 4751-4798*

Lukyanov, L.G.,Uralskaya, V.S. 2015:

**Hill stability of natural planet satellites in the restricted elliptic three-body problem**

*Solar System Research 49(4): 263-270*

Radwan, M.; Abd El Motelp, N.S. 2021:

**Location and Stability of the Triangular Points in the Triaxial Elliptic Restricted Three-Body Problem**

*Revista Mexicana de Astronomía y Astrofísica 57(2): 311-319*

rdi, B. 1977:

**An asymptotic solution for the Trojan case of the plane elliptic restricted problem of three bodies**

*Celestial Mechanics 15(3): 367-383*

Zhou, Q.; Zhang, Y. 2017:

**Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem**

*Discrete-Continuous Dynamical Systems - A 37(3): 1763-1787*

Kholostova, O. 2015:

**Stability of triangular libration points in a planar restricted elliptic three body problem in cases of double resonances**

*International Journal of Non-Linear Mechanics 73: 64-68*

Ni, X.; Wu, X. 2014:

**New adaptive time step symplectic integrator: an application to the elliptic restricted three-body problem**

*Research in Astronomy and Astrophysics 14(10): 1329-1342*

Galeş, C. 2012:

**A cartographic study of the phase space of the elliptic restricted three body problem. Application to the Sun–Jupiter–Asteroid system**

*Communications in Nonlinear Science and Numerical Simulation 17(12): 4721-4730*