Principal component regression, ridge regression and ridge principal component regression in spectroscopy calibration
Vigneau, E.; Devaux, M.F.; Oannari, E.M.; Robert, P.
Journal of Chemometrics 11(3): 239-249
1997
ISSN/ISBN: 0886-9383 Accession: 077361269
PDF emailed within 1 workday: $29.90
Related References
Polat, E.; Gunay, S. 2021: The Comparison of Partial Least Squares Regression, Principal Component Regression and Ridge Regression with Multiple Linear Regression for Predicting Pm10 Concentration Level Based on Meteorological Parameters Journal of Data Science: 663-692Li, B.Y.; Kasemsumran, S.; Yun, H.U.; Liang, Y.Z.; Yukihiro I. 2007: Comparison of performance of partial least squares regression, secured principal component regression, and modified secured principal component regression for determination of human serum albumin, γ-globulin and glucose in buffer solutions and in vivo blood glucose quantification by near-infrared spectroscopy Analytical and Bioanalytical Chemistry 387(2): 603-611
Li, B.-Y.; Kasemsumran, S.; Hu, Y.; Liang, Y.-Z.; Ozaki, Y. 2007: Comparison of performance of partial least squares regression, secured principal component regression, and modified secured principal component regression for determination of human serum albumin, gamma-globulin and glucose in buffer solutions and in vivo blood glucose quantification by near-infrared spectroscopy Analytical and Bioanalytical Chemistry 387(2): 603-611
Vigneau, E.; Bertrand, D.; Qannari, E.M. 1996: Application of latent root regression for calibration in near-infrared spectroscopy. Comparison with principal component regression and partial least squares Chemometrics and Intelligent Laboratory Systems 35(2): 231-238
Hsuan, F.C. 1981: Ridge regression from principal component point of view Communications in Statistics - Theory and Methods 10(19): 1981-1995
Batah F Sh, M.; Ozkale, M.R.; Gore, S.D. 2009: Combining Unbiased Ridge and Principal Component Regression Estimators Communications in Statistics. Theory and Methods 38(13-15): 2201-2209
Baye, M.R.; Parker, D.F. 1984: Combining ridge and principal component regression:a money demand illustration Communications in Statistics - Theory and Methods 13(2): 197-205
Baye, M.R.; Parker, D.F. 1984: Combining ridge and principal component regression: amoney demand illustration Communications in Statistics. Theory and Methods 13(2): 197-205
Kun-Chi-Su; Bo-Jein-Kuo; Mei-Chu-Hong 2001: The comparison of stepwise regression and principal component regression in near-infrared spectroscopy Journal of the Agricultural Association of China 2(3): 226-240
Wu, J.; Asar, Y. 2017: Performance of the almost unbiased ridge-type principal component estimator in logistic regression model Communications in Statistics - Simulation and Computation 47(10): 2925-2937
Heij, C.; Groenen, P.J.F.; Van Dijk, D. 2007: Forecast comparison of principal component regression and principal covariate regression : Computational techniques for applied economic analisis of macroeconomic and financial processes Computational Statistics and Data Analysis 51(7): 3612-3625
Troskie, C.; Conradie, W. 1986: The distribution of the ratios of characteristics roots (condition numbers) and their applications in principal component or ridge regression Linear Algebra and its Applications 82: 255-279
Liu, Z.-y.; Huang, J.-f.; Shi, J.-j.; Tao, R.-x.; Zhou, W.; Zhang, L.-L. 2007: Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression Journal of Zhejiang University. Science. B 8(10): 738-744
Rook, A.J.; Dhanoa, M.S.; Gill, M. 1990: Prediction of the voluntary intake of grass silages by beef cattle 2. principal component and ridge regression analyses Animal Production 50(3): 439-454
Khotimah, B.K.; Putro, S.S. 2016: Time Series Forecasting Using a Hybrid Principal Component Analysis and Global Ridge-Regression Neural Network Model Advanced Science Letters 22(7): 1860-1864
Heij, C.; Groenen, P.J.; van Dijk, D. 2007: Forecast comparison of principal component regression and principal covariate regression Computational Statistics-Data Analysis 51(7): 3612-3625
Geetharamanan, G.; Singh, B.P.; Rajaram Mita 1988: Equivalance of principal component method and ridge regression method in numerical modelling of geophysical parameters Annual Convention and Seminar on Exploration Geophysics 14: A27
Hasegawa, T. 2006: Spectral simulation study on the influence of the principal component analysis step on principal component regression Applied Spectroscopy 60(1): 95-98
Vaira, S.; Mantovani, V., E.; Robles, J., C.; Sanchis, J., C.; Goicoechea, H., C. 1999: Use of chemometrics: Principal Component Analysis (PCA) and principal component regression (PCR) for the authentication of orange juice Analytical Letters 32(15): 3131-3141
Kurnaz, F.S. 2021: Performances of some high dimensional regression methods: sparse principal component regression Communications in Statistics - Simulation and Computation 50(9): 2529-2543