Radio frequency magnetron sputtering of Au and low temperature plasma enhanced chemical vapor deposition of silicon nitride for ring ultramicroelectrodes fabrication
Mingzhi, Z.H.U.; Zhuangde, J.I.A.N.G.; Weixuan, J.I.N.G.; Biao, Y.A.N.G.
Journal of Electroanalytical Chemistry (1992) 596(2): 124-130
2006
ISSN/ISBN: 1572-6657
Accession: 077495540
PDF emailed within 1 workday: $29.90
Related References
Pearce, C.W.; Fetcho, R.F.; Gross, M.D.; Koefer, R.F.; Pudlinger, R.A. 1992: Characteristics of silicon nitride deposited by plasma-enhanced chemical vapor deposition using a dual frequency radio-frequency source Journal of Applied Physics 71(4): 1838-1841Popa, A.C.; Stan, G.E.; Husanu, M.A.; Pasuk, I.; Popescu, I.D.; Popescu, A.C.; Mihailescu, I.N. 2013: Multi-layer haemocompatible diamond-like carbon coatings obtained by combined radio frequency plasma enhanced chemical vapor deposition and magnetron sputtering Journal of Materials Science. Materials in Medicine 24(12): 2695-2707
Smietana, M.; Bock, W.J.; Szmidt, J. 2011: Evolution of optical properties with deposition time of silicon nitride and diamond-like carbon films deposited by radio-frequency plasma-enhanced chemical vapor deposition method Thin Solid Films 519(19): 6339-6343
Śmietana, M.; Mroczyński, R.; Kwietniewski, N. 2014: Effect of Sample Elevation in Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF PECVD) Reactor on Optical Properties and Deposition Rate of Silicon Nitride Thin Films Materials 7(2): 1249-1260
Li, Y.M.; Liwei, L.I.; Selvan, J.A.; Delahoy, A.E.; Levy, R.A. 2005: Effects of seeding methods on the fabrication of microcrystalline silicon solar cells using radio frequency plasma enhanced chemical vapor deposition Thin Solid Films 483(1-2): 84-88
Ahnood, A.; Suzuki, Y.; Madan, A.; Nathan, A. 2012: Pulsed-radio frequency plasma enhanced chemical vapour deposition of low temperature silicon nitride for thin film transistors Thin Solid Films 520(15): 4831-4834
Peng, G.A.O.; Jun, X.U.; Yong, P.I.A.O.; Wanyu, D.I.N.G.; Dehe, W.A.N.G.; Xinlu, D.E.N.G.; Chuang, D.O.N.G. 2007: Deposition of silicon carbon nitride thin films by microwave ECR plasma enhanced unbalance magnetron sputtering Aepse 2005 : Asian-European International Conference on Plasma Surface Engineering 201(9-11): 5298-5301
Peng Gao; Jun Xu; Yong Piao; Wanyu Ding; Dehe Wang; Xinlu Deng; Chuang Dong 2007: Deposition of silicon carbon nitride thin films by microwave ECR plasma enhanced unbalance magnetron sputtering Surface and Coatings Technology 201(9-11): 5298-5301
Mukhopadhyay, S.; Ray, S. 2011: Silicon rich silicon oxide films deposited by radio frequency plasma enhanced chemical vapor deposition method: Optical and structural properties Applied Surface Science 257(23): 9717-9723
Gu, J.D.; Chen, P.L. 2006: Low-temperature fabrication of silicon films by large-area microwave plasma enhanced chemical vapor deposition Asian Conference on Chemical Vapor Deposition 498(1-2): 14-19
Qi, J.L.; Zheng, W.T.; Zheng, X.H.; Wang, X.; Tian, H.W. 2011: Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition Applied Surface Science 257(15): 6531-6534
Hozumi, A.; Sekoguchi, H.; Takai, O. 1997: Effect of ultraviolet irradiation on silicon oxide films prepared by radio frequency plasma-enhanced chemical vapor deposition Journal of the Electrochemical Society 144(8): 2824-2828
Chattopadhyay, K.K.; Banerjee, A.N.; Kundoo, S. 2003: Reduced bias synthesis of cubic boron nitride thin films by magnetically enhanced inductively coupled radio frequency plasma chemical vapor deposition Materials Letters (General Ed.) 57(8): 1459-1463
Tabuchi, T.; Takashiri, M.; Ishida, K. 2007: Fast chemical vapor deposition of microcrystalline silicon by applying magnetic field to hollow electrode enhanced radio frequency glow plasma Surface and Coatings Technology 202(1): 114-120
Chen, Y.H.; Hu, C.T.; Lin, I.N. 1997: Selected-area deposition of diamond films on silicon nitride-coated silicon substrates using negatively biased microwave plasma enhanced chemical vapor deposition technique Japanese Journal of Applied Physics 36(11): 6900-6904