Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies
Javili, A.; Mcbride, A.; Steinmann, P.; Reddy, B.D.
Philos. Mag. (2003, Print) 92(28-30): 3540-3563
2012
ISSN/ISBN: 1478-6435 Accession: 077582064
PDF emailed within 1 workday: $29.90
Related References
Murphy, J.; Destrade, M. 2009: Surface waves and surface stability for a pre-stretched, unconstrained, non-linearly elastic half-space International Journal of Non-Linear Mechanics 44(5): 545-551Kashtanova, S. V.; Morozov, N. F.; Tovstik, P. E. 2013: Volume and surface stability of uniformly compressed transversely isotropic linearly elastic materials Continuum Mechanics and Thermodynamics 25(5): 663-673
Wu, K.; Ginsberg, J.H. 1998: Mid-frequency range acoustic radiation from slender elastic bodies using the surface variational principle Journal of Vibration and Acoustics 120(2): 392-400
Nicotra, V.; Podioguidugli, P.; Tiero, A. 1999: Exact equilibrium solutions for linearly elastic plate-like bodies Journal of Elasticity 56(3): 231-245
Raty, R.; Von Boehm, J.; Ranta, M.A. 1994: Non-linearly forced vibrations of elastic systems carrying rigid bodies Journal of Sound and Vibration 169(1): 71-87
Lurie, K.A.; Cherkaev, A.V. 1984: G-closure of some particular sets of admissible material characteristics for the problem of bending of thin elastic plates Journal of Optimization Theory and Applications 42(2): 305-316
Wang, C.-. 1975: Global equations of motion for anelastic bodies and bodies with elastic range Archive for Rational Mechanics and Analysis 59(1): 9-23
Roche, C.; Flurin, P.-H.; Wright, T.; Crosby, L.A.; Mauldin, M.; Zuckerman, J.D. 2009: An evaluation of the relationships between reverse shoulder design parameters and range of motion, impingement, and stability Journal of Shoulder and Elbow Surgery 18(5): 734-741
Bonetti, E.; Bonfanti, G.; Licht, C.; Rossi, R. 2020: Dynamics of two Linearly Elastic Bodies Connected by a Heavy Thin Soft Viscoelastic Layer Journal of Elasticity 141(1): 75-107
Lesimple, M. 2004: On the Propagation of Progressive Waves in Prestressed, Linearly Elastic, Transversely Isotropic, Kirchhoff Plate-Like Bodies Mathematics and Mechanics of Solids 9(2): 209-217
Mcleod, J.B.; Rajagopal, K.R. 1999: Inhomogeneous non-unidirectional deformations ofa wedge of a non-linearly elastic material Archive for Rational Mechanics and Analysis 147(3): 179-196
Kounadis, A.N.; Mallis, J.G. 1987: Elastica type buckling analysis of bars from non-linearly elastic material International Journal of Non-Linear Mechanics 22(2): 99-107
Hevko, R. B.; Zalutskyi, S. Z.; Hladyo, Y. B.; Tkachenko, I. G.; Lyashuk, O. L.; Pavlova, O. M.; Pohrishchuk, B., V.; Trokhaniak, O. M.; Dobizha, N., V. 2019: Determination of Interaction Parameters and Grain Material Flow Motion on Screw Conveyor Elastic Section Surface Inmateh-Agricultural Engineering 57(1): 123-134
Kuntashev, P.A.; Nemirovskii, Y.V. 1993: Minimization of stress levels by distribution of elastic parameters in elastic and thermoelastic bodies Journal of Mathematical Sciences 66(1): 2061-2067
Kuntashev, P.A.; Nemirovskii, Y.V. 1993: Optimization of the stressed state by a distribution of elastic parameters in elastic bodies Journal of Mathematical Sciences 63(3): 380-384
Drozdov, A.D.; Solomentsev Yu, E. 1986: Sur la stabilité des corps non linéairement viscoélastiques - On stability of non linearly viscoelastic bodies Izvestia Akademii Nauk Sssr. Mehanika Tverdogo Tela (6): 113-118
Zubov, L.M.; Rudev, A.N. 2011: A criterion for the strong ellipticity of the equilibrium equations of an isotropic non-linearly elastic material Journal of Applied Mathematics and Mechanics 75(4): 432-446
BaraŃSki, W. 2000: On Infinitesimal Stability and Homogenization of Linearly Elastic Periodic Composites Mathematical Models and Methods in Applied Sciences 10(08): 1251-1262
Beatty, M.; Dadras, P. 1976: Some experiments on the elastic stability of some highly elastic bodies International Journal of Engineering Science 14(2): 233-238
Gilat, R.; Aboudi, J. 2000: Parametric Stability of Non-Linearly Elastic Composite Plates by Lyapunov Exponents Journal of Sound and Vibration 235(4): 627-637