Response of Ice and Liquid Water Paths of Tropical Cyclones to Global Warming Simulated by a Global Nonhydrostatic Model with Explicit Cloud Microphysics
Yamada, Y.; Satoh, M.
Journal of Climate 26(24): 9931-9945
2013
ISSN/ISBN: 0894-8755
Accession: 077616840
PDF emailed within 1 workday: $29.90
Related References
Satoh, M.; Iga, S.I.; Tomita, H.; Tsushima, Y.; Noda, A.T. 2012: Response of Upper Clouds in Global Warming Experiments Obtained Using a Global Nonhydrostatic Model with Explicit Cloud Processes Journal of Climate 25(6): 2178-2191Ohno, T; Satoh, M; Yamada, Y 2016: Warm Cores, Eyewall Slopes, and Intensities of Tropical Cyclones Simulated by a 7-km-Mesh Global Nonhydrostatic Model Journal of the Atmospheric Sciences 73(11): 4289-4309
Noda, A.T.; Satoh, M.; Yamada, Y.; Kodama, C.; Miyakawa, T.; Seiki, T. 2015: Cold and Warm Rain Simulated Using a Global Nonhydrostatic Model without Cumulus Parameterization, and their Responses to Global Warming Journal of the Meteorological Society of Japan. Ser. Ii 93(2): 181-197
Ohno, T.; Satoh, M. 2018: Roles of Cloud Microphysics on Cloud Responses to Sea Surface Temperatures in Radiative-Convective Equilibrium Experiments Using a High-Resolution Global Nonhydrostatic Model Journal of Advances in Modeling Earth Systems 10(8): 1970-1989
Yuqing, W.A.N.G. 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization Monthly Weather Review 130(12): 3022-3036
Tsushima, Y; Iga, S-ichi; Tomita, H; Satoh, M; Noda, A T.; Webb, M J. 2014: High cloud increase in a perturbed SST experiment with a global nonhydrostatic model including explicit convective processes Journal of Advances in Modeling Earth Systems 6(3): 571-585
Oouchi, K.; Yoshimura, J.; Yoshimura, H.; Mizuta, R.; Kusunoki, S.; Noda, A. 2006: Tropical Cyclone Climatology in a Global-Warming Climate as Simulated in a 20 km-Mesh Global Atmospheric Model: Frequency and Wind Intensity Analyses Journal of the Meteorological Society of Japan. Ser. Ii 84(2): 259-276
Satoh, M; Yamada, Y; Sugi, M; Kodama, C; Noda, A T. 2015: Constraint on Future Change in Global Frequency of Tropical Cyclones due to Global Warming Journal of the Meteorological Society of Japan 93(4): 489-500
Noda, A.T.; Kodama, C.; Yamada, Y.; Satoh, M.; Ogura, T.; Ohno, T. 2019: Responses of Clouds and Large Scale Circulation to Global Warming Evaluated from Multidecadal Simulations Using a Global Nonhydrostatic Model Journal of Advances in Modeling Earth Systems 11(9): 2980-2995
Noda, A.T.; Oouchi, K.; Satoh, M.; Tomita, H. 2012: Quantitative Assessment of Diurnal Variation of Tropical Convection Simulated by a Global Nonhydrostatic Model without Cumulus Parameterization Journal of Climate 25(14): 5119-5134
Inoue, T.; Satoh, M.; Miura, H.; Mapes, B. 2008: Characteristics of Cloud Size of Deep Convection Simulated by a Global Cloud Resolving Model over the Western Tropical Pacific Journal of the Meteorological Society of Japan 86A: 1-15
Sato, Y.; Goto, D.; Michibata, T.; Suzuki, K.; Takemura, T.; Tomita, H.; Nakajima, T. 2018: Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model Nature Communications 9(1): 985
Brient, F.; Bony, S. 2012: How may low-cloud radiative properties simulated in the current climate influence low-cloud feedbacks under global warming? Geophysical Research Letters 39(20)
Yaroshevich, M.I. 2009: Variation in the intensity of tropical cyclones in connection with global warming Izvestiya, Atmospheric and Oceanic Physics 45(3): 398-401
Cardwell, J.R.; Choularton, T.W.; Wilson, D.; Kershaw, R. 2002: Use of an explicit model of the microphysics of precipitating stratiform cloud to test a bulk microphysics scheme Quarterly Journal of the Royal Meteorological Society 128(580): 573-592