Robustness of reweighted Least Squares Kernel Based Regression
Debruyne, M.; Christmann, A.; Hubert, M.; Suykens, J.A.K.
J. Multivar. Anal 101(2): 447-463
2010
ISSN/ISBN: 0047-259X
Accession: 077651369
PDF emailed within 1 workday: $29.90
Related References
Oleary, D.P. 1990: Robust regression computation using iteratively reweighted least squares Siam Journal on Matrix Analysis and Applications 11(3): 466-480Sievers, G.L.; Abebe, A. 2004: Rank estimation of regression coefficients using iterated reweighted least squares Journal of Statistical Computation and Simulation 74(11): 821-831
Marx, B.D. 1996: Iteratively reweighted partial least squares estimation for generalized linear regression Technometrics 38(4): 374-381
Chen, K; Lv, Q; Lu, Y; Dou, Y 2017: Robust regularized extreme learning machine for regression using iteratively reweighted least squares Neurocomputing 230: 345-358
Jabr, R.A. 2006: Power system state estimation using an iteratively reweighted least squares method for sequential L1-regression Electrical Power and Energy Systems 28(2): 86-92
Gao, Z.; He, X.; Zhang, G.; Li, Y.; Wu, X. 1999: Investigation on the relationship between analytical precision and concentration with iteratively reweighted least-squares linear regression method Talanta 49(2): 331-337
Wang, D.; Hutson, A.D. 2015: Inversion Theorem Based Kernel Density Estimation for the Ordinary Least Squares Estimator of a Regression Coefficient Communications in Statistics: Theory and Methods 44(8): 1571-1579
Pillonetto, G; Chiuso, A 2015: Tuning complexity in regularized kernel-based regression and linear system identification: The robustness of the marginal likelihood estimator Automatica 58: 106-117
Huaiping, J.I.N.; Xiangguang, C.H.E.N.; Jianwen, Y.A.N.G.; Lei, W.U. 2014: Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes Computers and Chemical Engineering 71: 77-93
Xu, D.; Liu, S.; Cai, Y.; Yang, C. 2019: Baseline correction method based on doubly reweighted penalized least squares Applied Optics 58(14): 3913-3920
Chen, C.; He, L.; Li, H.; Huang, J. 2018: Fast iteratively reweighted least squares algorithms for analysis-based sparse reconstruction Medical Image Analysis 49: 141-152
Branden, K.V.; Hubert, M. 2004: Robustness properties of a robust partial least squares regression method Anal. Chim. Acta 515(1): 229-241
Jie, Y.U. 2012: Multiway Gaussian Mixture Model Based Adaptive Kernel Partial Least Squares Regression Method for Soft Sensor Estimation and Reliable Quality Prediction of Nonlinear Multiphase Batch Processes Industrial and Engineering Chemistry Research 51(40): 13227-13237
Kuh, A.; Chaopin, Z.H.U.; Mandic, D. 2006: Sensor Network Localization Using Least Squares Kernel Regression Lect. Notes Comput. Sci: 1280-1287
Shinzawa, H.; Ritthiruangdej, P.; Ozaki, Y. 2011: Kernel analysis of partial least squares (PLS) regression models Applied Spectroscopy 65(5): 549-556