Some unbiased estimators versus mean per unit and ratio estimators in finite population sample surveys
Prasad, B.
Communications in Statistics. Theory and Methods 15(12): 3647-3657
1986
ISSN/ISBN: 0361-0926
Accession: 077862109
PDF emailed within 1 workday: $29.90
Related References
Singh, V.P.; Pajankar, V.D. 2009: Class of Unbiased Modified Ratio and Product Estimators For. Finite Population mean using Coefficient of Variation of Auxiliary Variable in Sample Surveys International Journal of Agricultural and Statistical Sciences 5(2): 387-396Prasad, B.; Singh, H.P. 1992: Unbiased estimators of finite population variance using auxiliary information in sample surveys Communications in Statistics. Theory and Methods 21(5): 1367-1376
Prasad, B. 1989: Some improved ratio type estimators of population mean and ratio in finite population sample surveys Communications in Statistics. Theory and Methods 18(1): 379-392
Prasad, B.; Singh, H.P. 1990: Somle improved ratio-type estimators of finite population variance in sample surveys Communications in Statistics. Theory and Methods 19(3): 1127-1139
Mickey, M.R. 1959: Some finite population unbiased ratio and regression estimators J. American Stat. Ass, Menasha, Wisc., Sept. 54(287): 594-612
Derrick, S. Tracy; Housila, P. Singh 1999: An Improved Class of Estimators for Finite Population Mean in Sample Surveys Biometrical Journal 41(7): 891-895
Arcos, A.; Rueda, M.; Munoz, J.F. 2007: An improved class of estimators of a finite population quantile in sample surveys Applied Mathematics Letters 20(3): 312-315
Rueda, M.M.; Arcos, A.; Maltinezmiranda,; Roman, Y. 2004: Some improved estimators of finite population quantile using auxiliary information in sample surveys Computational Statistics and Data Analysis 45(4): 825-848
Jozani, M.J.; Majidi, S.; Perron, F. 2012: Unbiased and almost unbiased ratio estimators of the population mean in ranked set sampling Statistical Papers 53(3): 719-737
Lih-Yuan Deng and Raj, S. Chhikara 1991: On Asymptotically Design-Unbiased Estimators of a Finite Population Mean Biometrika 78(1): 189-195
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 2010: Calibrated linear unbiased estimators in finite population sampling Journal of Statistical Planning and Inference 140(3): 652-658
Farver, T.B. 2002: Comparison of ratio-synthetic, sample-size dependent and EBLUP estimators as estimators of food-animal productivity parameters Preventive Veterinary Medicine 52(3-4): 313-332
Hartung, J.; Voet, B. 1986: Best invariant unbiased estimators for the mean squared error of variance component estimators Journal of the American Statistical Association 81(395): 689-691
Milliken, G.A.; Mohammed, A.L.B.O.H.A.L.I. 1984: On necessary and sufficient conditions for ordinary least squares estimators to be best linear unbiased estimators The American Statistician 38(4): 298-299
Tapan, K. Nayak 2003: Finding optimal estimators in survey sampling using unbiased estimators of zero Journal of Statistical Planning and Inference 114(1-2): 21-30
Shabbir, J.; Gupta, S. 2010: Some Estimators of Finite Population Variance of Stratified Sample Mean Communications in Statistics. Theory and Methods 39(16-17): 3001-3008
Singh, V.P. 2016: A General Class of Unbiased Jackknifed Estimators of a Parameter, and Application Thereof in Ratio Method of Estimation for a Population with Gamma Distribution International Journal of Agricultural and Statistical Sciences 12(2): 403-408
Mahanty, B.; Mishra, G. 2020: Improved Ratio Type Estimators of Finite Population Mean International Journal of Agricultural and Statistical Sciences 16(2): 733-738
Lu, J.; Yan, Z. 2014: A class of ratio estimators of a finite population mean using two auxiliary variables Plos one 9(2): E89538
Biradar, R.S.; Singh, H.P. 1992: On a class of almost unbiased ratio estimators Biometrical Journal 34(8): 937-944