Stability analysis of generalized entropies and q-exponential distributions
Abe, S.
Physica. D 193(1-4): 84-89
2004
ISSN/ISBN: 0167-2789
Accession: 077914077
PDF emailed within 1 workday: $29.90
Related References
Abe, S. 2002: Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions Physical Review. E Statistical Nonlinear and Soft Matter Physics 66(4 Part 2): 046134Koski, T.; Persson, L.E. 1992: Some properties of generalized exponential entropies with applications to data compression Information Sciences 62(1-2): 103-132
Qun, J.I.N.; Sugasawa, Y.; Seya, K. 1991: Analysis of Stochastic Petri Net model with non-exponential distributions using a generalized Markov Renewal Process Microelectronics and Reliability 31(5): 933-939
Gloor, W.E. 1983: Extending the continuum of molecular weight distributions based on the generalized exponential (Gex) distributions Journal of Applied Polymer Science 28(2): 795-805
Shorgin, S.Y. 1998: Exponential bounds for generalized poisson distributions Journal of Mathematical Sciences 91(3): 2984-2989
Debasis Kundu; Rameshwar, D. Gupta; Anubhav Manglick 2005: Discriminating between the log-normal and generalized exponential distributions Journal of Statistical Planning and Inference 127(1-2): 213-227
Gupta, R.D.; Kundu, D. 2004: Discriminating between gamma and generalized exponential distributions Journal of Statistical Computation and Simulation 74(2): 107-121
Gupta, R.D.; Kundu, D. 2003: Discriminating between Weibull and generalized exponential distributions Computational Statistics and Data Analysis 43(2): 179-196
Harris, C.M.; Sykes, E.A. 1987: Likelihood estimation for generalized mixed exponential distributions Naval Research Logistics 34(2): 251-279
Lye, J.N.; Martin, V.L. 1993: Robust estimation, nonnormalities, and generalized exponential distributions Journal of the American Statistical Association 88(421): 261-267
Raschke, M 2015: Modeling of magnitude distributions by the generalized truncated exponential distribution Journal of Seismology 19(1): 265-271
Sum, S.T.; Oommen, B.J. 1995: Mixture decomposition for distributions from the exponential family using a generalized method of moments IEEE Transactions on Systems, Man, and Cybernetics 25(7): 1139-1149
Crowder, G.E.; Moore, A.H. 1983: Adaptive robust estimation based on a family of generalized exponential power distributions IEEE Transactions on Reliability 32(5): 488-495
Huzurbazar, A.V. 1999: Flowgraph models for generalized phase type distributions having non-exponential waiting times Scandinavian Journal of Statistics 26(1): 145-157
Zamzami, N.; Bouguila, N. 2022: Sparse Count Data Clustering Using an Exponential Approximation to Generalized Dirichlet Multinomial Distributions IEEE Transactions on Neural Networks and Learning Systems 33(1): 89-102
Chung, J. 2008: Stability of exponential equations in Schwartz distributions Nonlinear Analysis 69(10): 3503-3511
Zhan, T.; Chevoneva, I.; Iglewicz, B. 2011: Generalized weighted likelihood density estimators with application to finite mixture of exponential family distributions Computational Statistics and Data Analysis 55(1): 457-465
Dallery, Y. 1994: On modeling failure and repair times in stochastic models for manufacturing systems using generalized exponential distributions Queueing Systems 15(1-4): 199-209
Neupokoeva, M.V. 1989: A characterization of exponential and geometrical distributions and its stability bound Journal of Mathematical Sciences 47(1): 2332-2335
Tsai, M.-T.; Hsu, F.-J.; Tsai, C.-H. 2019: The Ordering of Shannon Entropies for the Multivariate Distributions and Distributions of Eigenvalues Entropy 21(2)