The magneto-electric effect in molten salts. III: Measurement of the thermomagneto-electric effect in molten potassium nitrate
Guerinouler, D.; Nicollin, C.
Electrochimica Acta 29(6): 745-751
1984
ISSN/ISBN: 0013-4686
Accession: 078367115
PDF emailed within 1 workday: $29.90
Related References
Saadi, L.; Moussa, R.; Samdi, A.; Mosset, A. 1999: Synthesis of mullite precursors in molten salts. Influence of the molten alkali nitrate and additives Journal of the European Ceramic Society 19(4): 517-520Cope, F.W. 1979: Magneto electric charge states of matter energy a 2nd approximation 3. magneto electric di poles in gases and liquids especially water evidence suggesting magneto electric ionization and magneto electrophoresis the ehrenhaft experiments Physiological Chemistry and Physics 11(6): 517-522
Bloom, H.; Heymann, E. 1947: The electric conductivity and the activation energy of ionic migration of molten salts and their mixtures Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences 188(1014): 392-414
Lv, X; Xu, Z; Li, J; Chen, J; Liu, Q 2016: Theoretical investigation on local structure and transport properties of NaFAlF3 molten salts under electric field environment Journal of Molecular Structure 1117: 105-112
Fry, S.E.; Pienta, N.J. 1985: Effects of molten salts on reactions. Nucleophilic aromatic substitution by halide ions in molten dodecyltributylphosphonium salts Journal of the American Chemical Society 107(22): 6399-6400
Cope, F.W. 1979: Magneto electric charge states of matter energy a 2nd approximation 1. a test of the magneto electric di pole structure hypothesis for electrons neutrons and protons estimation of high mass for the single magneto electric di pole leading to a possible role in biological and physical cosmic observations Physiological Chemistry and Physics 11(5): 453-460
Desyatnik, V.N.; Koverda, A.P.; Nechaev, A.I.; Chervinskij Yu, F. 1984: Conductivité électrique et viscosité des mélanges fondus de fluorures de béryllium et de potassium - Electric conductivity and viscosity of molten beryllium and potassium fluoride mixtures Elektrohimia 20(7): 968-970
Kisza, A. 2006: The capacitance of the diffuse layer of electric double layer of electrodes in molten salts International Conference on Electrode Processes 51(11): 2315-2321
Fujimoto, H.; Saito, T.; Shimizu, M.; Kiyokawa, N.; Iritani, H.; Nishi, S. 1991: Characteristics of electric power and heating of molten steel of AC plasma torch for arc heating of molten steel in tundish Tetsu-To-Hagane 77(10): 1649-1655
Cope, F.W. 1979: Magneto electric charge states of matter energy a 2nd approximation 2. magneto electrets as possible evidence of magneto electric di poles in solids and as a possible mechanism for biological effects of magnetic fields Physiological Chemistry and Physics 11(5): 461-464
Ruiz-Cabañas, F. Javier; Prieto, C; Osuna, R; Madina, V; Fernández, A. Inés; Cabeza, L F. 2016: Corrosion testing device for in-situ corrosion characterization in operational molten salts storage tanks: A516 Gr70 carbon steel performance under molten salts exposure Solar Energy Materials and Solar Cells 157: 383-392
Minevich, A.; Marcus, Y.; Bendor, L. 2004: Densities of solid and molten salt hydrates and their mixtures and viscosities of the molten salts Journal of Chemical and Engineering Data 49(5): 1451-1455
Niedermeier, K.; Marocco, L.; Flesch, J.; Mohan, G.; Coventry, J.; Wetzel, T. 2018: Performance of molten sodium vs. molten salts in a packed bed thermal energy storage Applied Thermal Engineering 141: 368-377
Saboungi, M.L.; Aneesur, R.A.H.M.A.N.; Blander, M. 1984: Molecular dynamics studies of complexing in binary molten salts. I: Molten MAX4 The Journal of Chemical Physics 80(5): 2141-2150
Ejima, T.; Yamamura, T. 1984: Thermophysical properties of molten salts: hypersonic velocities of molten alkali nitrates and their mixtures International Journal of Thermophysics 5(2): 131-148