Three dimensional finite element modeling of streaming potential and associated magnetic field in porous media
Masse, P.; Berthier, J.
Ieee Trans. Magn 32(3): 994-997
1996
ISSN/ISBN: 0018-9464
Accession: 078543994
PDF emailed within 1 workday: $29.90
Related References
Steve, H. Nguyen; Duncan Mardon 1995: A p-version finite-element formulation for modeling magnetic resonance relaxation in porous media Computers and Geosciences 21(1): 51-60G.G.ttardi; M.V.nutelli 1995: MFE-TRANSP; one-dimensional moving-finite-element program for modeling solute transport in porous media Computers and Geosciences 21(5): 663-685
Meftah, F.; Dal Pont, S.; Schrefler, B.A. 2012: A three-dimensional staggered finite element approach for random parametric modeling of thermo-hygral coupled phenomena in porous media International Journal for Numerical and Analytical Methods in Geomechanics 36(5): 574-596
Meftah, F.; Dal Pont, S.; Schrefler, B.A. 2012: A three-dimensional staggered finite element approach for random parametric modeling of thermo-hygral coupled phenomena in porous media International Journal for Numerical and Analytical Methods in Geomechanics 36.5
El-Dib, Y.O.; Ghaly, A.Y. 2004: Destabilizing effect of time-dependent oblique magnetic field on magnetic fluids streaming in porous media Journal of Colloid and Interface Science 269(1): 224-239
Durlofsky, L.J. 1993: A triangle based mixed finite element : finite volume technique for modeling two phase flow through porous media Journal of Computational Physics 105(2): 252-266
Mazzia, A.; Putti, M. 2006: Three-dimensional mixed finite element-finite volume approach for the solution of density-dependent flow in porous media J. Comput. Appl. Math 185(2): 347-359
Yasushi Kanai; Takeo Abe; Masakazu Sengoku; Taizo Iijima; Masahiro Iizuka; Koichi Mukasa 1990: Gauge condition of magnetic vector potential and a new finite element formulation for three-dimensional magnetostatic field analysis Electrical Engineering in Japan 110(4): 92-100
Verruijt, A. 1991: Finite element modeling of transport in porous media Applied Scientific Research 48(2): 129-139
Sadeqi-Moqadam, M; Riahi, S; Bahramian, A 2016: Monitoring wettability alteration of porous media by streaming potential measurements: Experimental and modeling investigation Colloids and Surfaces A: Physicochemical and Engineering Aspects 497: 182-193
Ziegelhoeffer A.; De Jong J.W.; Ferrari R.; Turi Nagy L. 2011: Extended finite element modeling of deformable porous media with arbitrary interfaces Applied Mathematical Modelling 35(11): 5426-5441
Yang, Z.; Smolinski, P.; Lin, J.-S.; Gilbertson, L.G. 2011: Dynamical Finite Element Modeling of Soft Tissues as Chemoelectric Porous Media Journal of Mechanics in Medicine and Biology 11(1): 101-130
Greenly, B.T.; Joy, D.M. 1996: One-Dimensional Finite-Element Model for High Flow Velocities in Porous Media Journal of Geotechnical Engineering 122(10): 789-796
Huyakorn Peter, S.; Guvanasen Victoria, M.; Springer Everett, P. 1986: Finite element simulation of three-dimensional transport in variably saturated porous media Pages 53-59 1986
Pouya, A 2015: A finite element method for modeling coupled flow and deformation in porous fractured media International Journal for Numerical and Analytical Methods in Geomechanics 39(16): 1836-1852