Home
  >  
Section 80
  >  
Chapter 79,294

Role of Thylakoid Protein Phosphorylation in Energy-Dependent Quenching of Chlorophyll Fluorescence in Rice Plants

Pashayeva, A.; Wu, G.; Huseynova, I.; Lee, C.-H.; Zulfugarov, I.S.

International Journal of Molecular Sciences 22(15)

2021


PMID: 34360743
DOI: 10.3390/ijms22157978
Accession: 079293916

Under natural environments, light quality and quantity are extremely varied. To respond and acclimate to such changes, plants have developed a multiplicity of molecular regulatory mechanisms. Non-photochemical quenching of chlorophyll fluorescence (NPQ) and thylakoid protein phosphorylation are two mechanisms that protect vascular plants. To clarify the role of thylakoid protein phosphorylation in energy-dependent quenching of chlorophyll fluorescence (qE) in rice plants, we used a direct Western blot assay after BN-PAGE to detect all phosphoproteins by P-Thr antibody as well as by P-Lhcb1 and P-Lhcb2 antibodies. Isolated thylakoids in either the dark- or the light-adapted state from wild type (WT) and PsbS-KO rice plants were used for this approach to detect light-dependent interactions between PsbS, PSII, and LHCII proteins. We observed that the bands corresponding to the phosphorylated Lhcb1 and Lhcb2 as well as the other phosphorylated proteins were enhanced in the PsbS-KO mutant after illumination. The qE relaxation became slower in WT plants after 10 min HL treatment, which correlated with Lhcb1 and Lhcb2 protein phosphorylation in the LHCII trimers under the same experimental conditions. Thus, we concluded that light-induced phosphorylation of PSII core and Lhcb1/Lhcb2 proteins is enhanced in rice PsbS-KO plants which might be due to more reactive-oxygen-species production in this mutant.

PDF emailed within 0-6 h: $19.90