Home
  >  
Section 81
  >  
Chapter 80,199

Pollination syndrome accurately predicts pollination by tangle-veined flies (Nemestrinidae: Prosoeca s.s.) across multiple plant families

Pauw, A.

Plant Biology 24(6): 1010-1021

2022


ISSN/ISBN: 1438-8677
PMID: 35975653
Accession: 080198450

The idea that a syndrome of floral traits predicts pollination by a particular functional group of pollinators remains simultaneously controversial and widely used because it allows plants to be rapidly assigned to pollinators. To test the idea requires demonstrating that there is an association between floral traits and pollinator type. I conducted such a test in the Cape Floristic Region of South Africa, by studying the pollination of eight plant species from six families that flower in spring and have scentless, actinomorphic, upwards-facing flowers, with orbicular petals all held in the same plane. The petals are brilliant-white with red-purple nectar guides. The tubes are short and hold small volumes of concentrated nectar, except in the rewardless Disa fasciata (Orchidaceae). Pollinators were photographed and captured, pollen loads were analysed and pollination networks were constructed. Consistent with the pollination syndrome hypothesis, the species with the defined syndrome shared a small group of pollinators. The most frequent pollinators belonged to a clade of four tangle-veined fly species with relatively short proboscises (Nemestrinidae: Prosoeca s.s.), while functionally similar Bombyliidae and Tabanidae played minor roles. Among the four Prosoeca species, only Prosoeca westermanni has been described, a result that highlights our ignorance about pollinators. The demonstration of an association between the syndrome of traits and pollination by this group of flies explains the repeated evolution of the syndrome across multiple plant families, and allows prediction of pollinators in additional species. More generally, the result validates the idea that the traits of organisms determine their ecology.

PDF emailed within 1 workday: $29.90