Equivariant Brauer and Picard groups and a Chase–Harrison–Rosenberg exact sequence
Crocker, D.; Raeburn, I.; Williams, D.P.
Journal of Algebra 307(1): 397-408
2007
ISSN/ISBN: 0021-8693 Accession: 083721470
PDF emailed within 1 workday: $29.90
Related References
Vitale, E.M. 2002: A Picard–Brauer exact sequence of categorical groups Journal of Pure and Applied Algebra 175(1-3): 383-408Caenepeel, S.; Verschoren, A. 1986: A relative version of the Chase-Harrison-Rosenberg sequence Journal of Pure and Applied Algebra 41: 149-168
Verschoren, A. 1983: Exact sequences for relative Brauer groups and Picard groups Journal of Pure and Applied Algebra 28(1): 93-108
Fernández Vilaboa, J.; González Rodrı́guez, R.; Villanueva Novoa, E. 1996: The Picard–Brauer Five Term Exact Sequence for a Cocommutative Finite Hopf Algebra Journal of Algebra 186(2): 384-400
Caenepeel, S.; Marcus, A. 2010: Hopf–Galois extensions and an exact sequence for H-Picard groups Journal of Algebra 323(3): 622-657
Rodríguez, R.; Novoa, V.E. 1998: Extension, restriction and picard-brauer exact sequences for torsion theories Communications in Algebra 26(1): 309-320
Blass, P.; Hoobler, R. 1986: Picard and Brauer groups of Zariski schemes Proceedings of the American Mathematical Society 97(3): 379-383
Marshall, I.; Nikshych, D. 2017: On the Brauer–Picard groups of fusion categories Mathematische Zeitschrift 288(3-4): 689-712
Cegarra, A.; Garzón, A. 2006: Equivariant Brauer groups and cohomology Journal of Algebra 296(1): 56-74
Sadhu, V. 2021: Equivariant Picard groups and Laurent polynomials Pacific Journal of Mathematics 312(1): 219-232
Ravi, C. 2018: A Grothendieck–Lefschetz theorem for equivariant Picard groups Journal of Pure and Applied Algebra 222(10): 3248-3254
Crocker, D.; Kumjian, A.; Raeburn, I.; Williams, D.P. 1997: An Equivariant Brauer Group and Actions of Groups on C*-Algebras Journal of Functional Analysis 146(1): 151-184
Nikshych, D.; Riepel, B. 2014: Categorical Lagrangian Grassmannians and Brauer–Picard groups of pointed fusion categories Journal of Algebra 411: 191-214
Kumjian, A.; Raeburn, I.; Williams, D.P. 1996: The equivariant Brauer groups of commuting free and proper actions are isomorphic Proceedings of the American Mathematical Society 124(3): 809-817
Riehm, C.R. 2005: Equivariant central simple graded algebras and the equivariant Brauer–Wall group Journal of Algebra 287(2): 501-520
Hashimoto, M. 2016: Equivariant class group. I. Finite generation of the Picard and the class groups of an invariant subring Journal of Algebra 459: 76-108
Caenepeel, S.; Van Den Bergh, M.; Van Oystaeyen, F. 1984: Generalized crossed products applied to maximal orders, Brauer groups and related exact sequences Journal of Pure and Applied Algebra 33(2): 123-149
Popescu, C.D.; Sonn, J.; Wadsworth, A.R. 2007: N-Torsion of Brauer groups as relative Brauer groups of abelian extensions Journal of Number Theory 125(1): 26-38
Ma, Q. 2022: Addition of Brauer classes via Picard schemes Journal of Algebra 589: 105-113
González-Avilés, C.D. 2018: The units-Picard complex and the Brauer group of a product Journal of Pure and Applied Algebra 222(9): 2746-2772