Incorporation of supramolecular polymer-functionalized graphene: Towards the development of bio-based high electrically conductive polymeric nanocomposites
Cheng, C.; Liao, Z.; Huang, J.; Huang, S.; Fan, W.
Composites Science and Technology 148: 89-96
2017
ISSN/ISBN: 0266-3538 Accession: 084748663
PDF emailed within 1 workday: $29.90
Related References
Li, Y.; Samad, Y.Abdul.; Polychronopoulou, K.; Alhassan, S.M.; Liao, K. 2014: Highly electrically conductive nanocomposites based on polymer-infused graphene sponges Scientific Reports 4: 4652Staudinger, U.; Zyla, G.; Krause, B.; Janke, A.; Fischer, D.; Esen, C.; Voit, B.; Ostendorf, A. 2017: Development of electrically conductive microstructures based on polymer/CNT nanocomposites via two-photon polymerization Microelectronic Engineering 179: 48-55
Hou, Y.; Wang, D.; Zhang, X.; Zhao, H.; Zha, J.; Dang, Z. 2013: Positive piezoresistive behavior of electrically conductive alkyl-functionalized graphene/polydimethylsilicone nanocomposites J. Mater. Chem. C 1(3): 515-521
Gongqing, T.A.N.G.; Jiang, Z.G.; Xiaofeng, L.I.; Zhang, H.B.; Song, H.O.N.G.; Yu, Z.Z. 2014: Electrically conductive rubbery epoxy/diamine-functionalized graphene nanocomposites with improved mechanical properties Composites. Part B, Engineering 67: 564-570
Mutlay, I.; Tudoran, L.B. 2014: Percolation Behavior of Electrically Conductive Graphene Nanoplatelets/Polymer Nanocomposites: Theory and Experiment Fullerenes, Nanotubes, and Carbon Nanostructures 22(1-5): 413-433
Kim, H.; Lee, H.; Lim, H.; Cho, H.; Choa, Y. 2019: Electrically conductive and anti-corrosive coating on copper foil assisted by polymer-nanocomposites embedded with graphene Applied Surface Science 476: 123-127
Yang, K.; Huang, X.; Fang, L.; He, J.; Jiang, P. 2014: Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold Nanoscale 6(24): 14740-14753
Chenlong, X.U.; Jian, G.A.O.; Hao, X.I.U.; Xiaoyu, L.I.; Jinlong, Z.H.A.N.G.; Feng, L.U.O.; Qin, Z.H.A.N.G.; Feng, C.H.E.N.; Qiang, F.U. 2013: Can in situ thermal reduction be a green and efficient way in the fabrication of electrically conductive polymer/reduced graphene oxide nanocomposites? Composites. Part A, Applied Science and Manufacturing 53: 24-33
Nezakati, T.; Tan, A.; Lim, J.; Cormia, R.D.; Teoh, S.-H.; Seifalian, A.M. 2019: Ultra-low percolation threshold POSS-PCL/graphene electrically conductive polymer: Neural tissue engineering nanocomposites for neurosurgery Materials Science and Engineering. C Materials for Biological Applications 104: 109915
Araya-Hermosilla, E.A.; Carlotti, M.; Picchioni, F.; Mattoli, V.; Pucci, A. 2020: Electrically-Conductive Polyketone Nanocomposites Based on Reduced Graphene Oxide Polymers 12(4)
Gelves, G.A.; Al-Saleh, M.H.; Sundararaj, U. 2011: Highly electrically conductive and high performance EMi shielding nanowire/polymer nanocomposites by miscible mixing and precipitation J. Mater. Chem. 21(3): 829-836
Jankovský, O.; Šimek, P.; Sedmidubský, D.; Huber, .; Pumera, M.; Sofer, Z. 2013: Towards highly electrically conductive and thermally insulating graphene nanocomposites: Al2O3–graphene RSC Adv. 4(15): 7418-7424
Narkis, M.; Segal, E.; Tchoudakov, R.; Cooper, H.; Siegmann, A. 2003: Polymeric sensors Sensing materials for liquid/vapor environments based on electrically conductive polymer blends Abstracts of Papers American Chemical Society 225(1-2): POLY 452
Tian, B.; Kou, Y.; Jiang, X.; Lu, J.; Xue, Y.; Wang, M.; Tan, L. 2020: Ultrasensitive determination of mercury ions using a glassy carbon electrode modified with nanocomposites consisting of conductive polymer and amino-functionalized graphene quantum dots Mikrochimica Acta 187(4): 210
Wang, S.; Cai, R.; Xue, H.; Liu, T.; Han, S.; Zhou, Z.; Hu, Z.; Meng, Q. 2021: Development of high thermally conductive and electrically insulated epoxy nanocomposites with high mechanical performance Polymer Composites 42(9): 4217-4226
Zhao, F.; Quan, H.; Zhang, S.; Xu, Y.; Zhou, Z.; Chen, G.; Li, Q. 2023: Watered-Based Graphene Dispersion Stabilized by a Graft Co-Polymer for Electrically Conductive Screen Printing Polymers 15(2)
Falco, G.; Griffiths, P.; Coutouly, C.; Fustin, C.; Baeza, G.P. 2020: Supramolecular Superparamagnetic Nanocomposites Based on a Magnetite-Filled Unentangled Terpyridine-Functionalized Polymer Macromolecules 53(13): 5361-5370
Castelaín, M.; Martínez, G.; Ellis, G.; Salavagione, H.J. 2013: A versatile chemical tool for the preparation of conductive graphene-based polymer nanocomposites Chemical Communications 49(79): 8967-8969
Koutsioukis, A.; Georgakilas, V.; Belessi, V.; Zboril, R. 2017: Highly Conductive Water-Based Polymer/Graphene Nanocomposites for Printed Electronics Chemistry 23(34): 8268-8274
Yanik, M.O.; Yigit, E.A.; Akansu, Y.E.; Sahmetlioglu, E. 2017: Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage Energy 138: 883-889