Section 86

EurekaMag Full Text Articles Chapter 85,680


Li, S.; Yan, T.; Li, W.; Bi, F. 2015: Modeling of vibration response of rock by harmonic impact. Journal of Natural Gas Science and Engineering 23: 90-96
Nikitin, A.V. 2009: Modeling of vibrational energy levels of methane from the Ab initio constructed potential energy surface. Optics and Spectroscopy 106(2): 176-182
Baksys, B.; Puodziuniene, N. 2007: Modeling of vibrational impact motion of mobile–based body. International Journal of Non-Linear Mechanics 42(9): 1092-1101
Baksys, B.; Puodziuniene, N. 2005: Modeling of vibrational non-impact motion of mobile-based body. International Journal of Non-Linear Mechanics 40(6): 861-873
Hu, Y.; Liew, K.; Wang, Q. 2012: Modeling of vibrations of carbon nanotubes. Procedia Engineering 31: 343-347
Loukhovitski, B.; Starik, A. 2009: Modeling of vibration–electronic–chemistry coupling in the atomic–molecular oxygen system. Chemical Physics 360(1-3): 18-26
Morozov, V.A.; Dubina, Y.M. 2002: Modeling of vibronic interaction and chaotic dynamics in electronic and nuclear subsystems of molecules. International Journal of Quantum Chemistry 88(5): 564-569
Matsuda, M.; Kimura, F. 1995: Modeling of virtual manufacturing devices for machining data generation. Computer Applications in Production Engineering: 407-414
Rekhson, S. M. 1985: Modeling of viscoelastic and structural relaxation in glass. Journal of Non-Crystalline Solids 73(1-3): 151-164
Wang, Z.; Schmitt, D.R.; Wang, R. 2017: Modeling of viscoelastic properties of nonpermeable porous rocks saturated with highly viscous fluid at seismic frequencies at the core scale. Journal of Geophysical Research: Solid Earth 122(8): 6067-6086
Kpeky, F.; Boudaoud, H.; Abed-Meraim, F.; Daya, E.M. 2015: Modeling of viscoelastic sandwich beams using solid–shell finite elements. Composite Structures 133: 105-116
Junker, P.; Nagel, J. 2019: Modeling of viscoelastic structures with random material properties using time‐separated stochastic mechanics. International Journal for Numerical Methods in Engineering 121(2): 308-333
Spathis, G.; Kontou, E. 2015: Modeling of viscoplastic cyclic loading behavior of polymers. Mechanics of Time-Dependent Materials 19(3): 439-453
Yun, T.; Kim, Y.R. 2010: Modeling of viscoplastic rate-dependent hardening-softening behavior of hot mix asphalt in compression. Mechanics of Time-Dependent Materials 15(1): 89-103
Zare, Y.; Rhee, K.Y. 2019: Modeling of viscosity and complex modulus for poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes nanocomposites assuming yield stress and network breaking time. Composites Part B: Engineering 156: 100-107
Hyötyniemi, H.; Ylinen, R. 2000: Modeling of visual flotation froth data. Control Engineering Practice 8(3): 313-318
Mollaei, M.K.; Hassani, M. 2008: Modeling of vocal tracts based on polynomials. Computers-Electrical Engineering 34(6): 547-556
Ma, R.; Li, M.; Li, H.; Yu, W. 2012: Modeling of void closure in diffusion bonding process based on dynamic conditions. Science China Technological Sciences 55(9): 2420-2431
Sánchez Cebrián, A.; Klunker, F.; Zogg, M. 2013: Modeling of void formation during the curing process of paste adhesives. Journal of Adhesion Science and Technology 28(7): 731-747
Hibiki, T.; Ozaki, T. 2017: Modeling of void fraction covariance and relative velocity covariance for upward boiling flow in vertical pipe. International Journal of Heat and Mass Transfer 112: 620-629
Dandekar, A.V.; Brooks, C.S. 2016: Modeling of void fraction covariance in two-phase flows with phase change. International Journal of Heat and Mass Transfer 100: 231-242
Kim, J.; Gao, X.; Srivatsan, T.S. 2004: Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Engineering Fracture Mechanics 71(3): 379-400
Malayeri, M.; Haghighat, F.; Lee, C. 2019: Modeling of volatile organic compounds degradation by photocatalytic oxidation reactor in indoor air: a review. Building and Environment 154: 309-323
Smith, I. 1990: Modeling of volcanic processes. Earth-Science Reviews 27(4): 402-403
Ito, A. 1997: Modeling of voltage-dependent diffused resistors. IEEE Transactions on Electron Devices 44(12): 2300-2302
Repetowicz, P.; Richmond, P. 2004: Modeling of waiting times and price changes in currency exchange data. Physica A: Statistical Mechanics and its Applications 343: 677-693
Boukettaya, S.; Alawar, A.; Almaskari, F.; Ben Daly, H.; Abdala, A.; Chatti, S. 2018: Modeling of water diffusion mechanism in polypropylene/date palm fiber composite materials. Journal of Composite Materials 52(19): 2651-2659
Kumar, V.; Kumar, P.; Eid, E.M.; Singh, J.; Adelodun, B.; Kumar, P.; Kumari, S.; Choi, K.S. 2021: Modeling of water hyacinth growth and its role in heavy metals accumulation from unoperated old Ganga canal at Haridwar, India. Rendiconti Lincei. Scienze Fisiche e Naturali 32(4): 805-816
Pal, S.C.; Chakrabortty, R. 2018: Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India. Modeling Earth Systems and Environment 5(2): 369-393
Li, M.; Dylla, H.F. 1995: Modeling of water outgassing from metal surfaces (III). Journal of Vacuum Science-Technology A: Vacuum, Surfaces, and Films 13(4): 1872-1878
Park, S.; Kwon, S.; Jung, S.H.; Lee, S. 2012: Modeling of water permeability in early aged concrete with cracks based on micro pore structure. Construction and Building Materials 27(1): 597-604
Gong, F.; Jacobsen, S. 2019: Modeling of water transport in highly saturated concrete with wet surface during freeze/thaw. Cement and Concrete Research 115: 294-307
da Silva, W.P.; de Oliveira Farias, V.S.; de Araújo Neves, G.; de Lima, A.G.B. 2011: Modeling of water transport in roof tiles by removal of moisture at isothermal conditions. Heat and Mass Transfer 48(5): 809-821
Gajda, J.; Bartnicki, G.; Burnecki, K. 2018: Modeling of water usage by means of ARFIMA–GARCH processes. Physica A: Statistical Mechanics and its Applications 512: 644-657
Bahaj, H.; Bakass, M.; Bayane, C.; Bellat, J.P.; Benchanaa, M.; Bertrand, G. 2010: Modeling of water vapor adsorption isotherms onto polyacrylic polymer. Journal of Thermal Analysis and Calorimetry 103(1): 117-123
Graeve, O.A.; Carrillo-Heian, E.M.; Feng, A.; Munir, Z.A. 2001: Modeling of wave configuration during electrically ignited combustion synthesis. Journal of Materials Research 16(1): 93-100
Sadovskii, V.M.; Sadovskaya, O.V.; Lukyanov, A.A. 2017: Modeling of wave processes in blocky media with porous and fluid-saturated interlayers. Journal of Computational Physics 345: 834-855
Cluggish, B.P.; Kim, J. 2012: Modeling of wave propagation and absorption in electron cyclotron resonance ion source plasmas. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 664(1): 84-97
Chen, W.; Shao, W.; Quan, J.; Long, S. 2016: Modeling of wave propagation in thin graphene sheets with WLP-FDTD method. Journal of Electromagnetic Waves and Applications 30(6): 780-787
Qiu, H.; Xia, T.; Yu, B.; Chen, W. 2019: Modeling of wave reflection in gas hydrate-bearing sediments. Wave Motion 85: 67-83
Adytia, D.; Pudjaprasetya, S.R.; Tarwidi, D. 2019: Modeling of wave run-up by using staggered grid scheme implementation in 1D Boussinesq model. Computational Geosciences 23(4): 793-811
Keang-Po Ho; Chen, L.; Tong, F. 2000: Modeling of waveform distortion due to optical filtering. IEEE Journal of Selected Topics in Quantum Electronics 6(2): 223-226
Harari, J.; Journet, F.; Rabii, O.; Guanghai Jin; Vilcot, J.; Decoster, D. 1995: Modeling of waveguide PIN photodetectors under very high optical power. IEEE Transactions on Microwave Theory and Techniques 43(9): 2304-2310
Wu, C.; Navarro, E.A.; Chung, P.Y.; Litva, J. 1995: Modeling of waveguide structures using the nonorthogonal FDTD method with a PML absorbing boundary. Microwave and Optical Technology Letters 8(4): 226-228
Spence, D.J.; Li, X.; Lee, A.J.; Pask, H.M. 2012: Modeling of wavelength-selectable visible Raman lasers. Optics Communications 285(18): 3849-3854
Zhang, J.; Liu, H. 2017: Modeling of waves overtopping and flooding in the coastal reach by a non-hydrostatic model. Procedia IUTAM 25: 126-130
Xue, J.; Li, C.; He, Q. 2019: Modeling of wax and asphaltene precipitation in crude oils using four-phase equilibrium. Fluid Phase Equilibria 497: 122-132
Grebenkin, K.F.; Tsarenkova, S.K.; Shnitko, A.S. 2008: Modeling of weakly nonideal detonation of condensed high explosives with a high content of carbon. Combustion, Explosion, and Shock Waves 44(2): 172-176
Patnaik, L.; Maity, S.R.; Kumar, S. 2021: Modeling of wear parameters and multi-criteria optimization by Box-Behnken design of Al Cr N thin film against gamma-irradiated Ti6Al4V counterbody. Ceramics International 47(14): 20494-20511
Mehra, D.; Sujith, S.; Mahapatra, M.; Harsha, S. 2018: Modeling of wear process parameters of in-situ RZ5-10wt%Ti C Composite using artificial neural network. Materials Today: Proceedings 5(11): 24124-24132
Jahanzaib, M.; Hussain, S.; Wasim, A.; Aziz, H.; Mirza, A.; Ullah, S. 2016: Modeling of weld bead geometry on HSLA steel using response surface methodology. International Journal of Advanced Manufacturing Technology 89(5-8): 2087-2098
Li, W.; He, C.; Chang, J.; Wang, J.; Wu, J. 2020: Modeling of weld formation in variable groove narrow gap welding by rotating GMAW. Journal of Manufacturing Processes 57: 163-173
Cao, Y.; Wang, Z.; Hu, S.; Wang, W. 2021: Modeling of weld penetration control system in GMAW-P using NARMAX methods. Journal of Manufacturing Processes 65: 512-524
Rudolph, J.; Wei, E.; Forster, M. 2003: Modeling of welded joints for design against fatigue. Engineering with Computers 19(2-3): 142-151
Duan, C.; Kong, W.; Hao, Q.; Zhou, F. 2013: Modeling of white layer thickness in high speed machining of hardened steel based on phase transformation mechanism. International Journal of Advanced Manufacturing Technology 69(1-4): 59-70
Feijoo, A.; Cidras, J. 2000: Modeling of wind farms in the load flow analysis. IEEE Transactions on Power Systems 15(1): 110-115
Petru, T.; Thiringer, T. 2002: Modeling of wind turbines for power system studies. IEEE Transactions on Power Systems 17(4): 1132-1139
Saha, P.; Tarafdar, D.; Pal, S.K.; Saha, P.; Srivastava, A.K.; Das, K. 2008: Modeling of wire electro-discharge machining of Ti C/Fe in situ metal matrix composite using normalized RBFN with enhanced k-means clustering technique. International Journal of Advanced Manufacturing Technology 43(1-2): 107-116
Arshak, K.; Jafer, E. 2008: Modeling of wireless based sensors data acquisitions systems used for esophagus monitoring. Sensors and Actuators A: Physical 142(1): 390-397
Gonçalves, R.; Lorensani, R.G.M.; Merlo, E.; Santaclara, O.; Touza, M.; Guaita, M.; Lario, F.J. 2018: Modeling of wood properties from parameters obtained in nursery seedlings. Canadian Journal of Forest Research 48(6): 621-628
Evtyukhin, N.V.; Genich, A.P.; Manelis, G.B. 1978: Modeling of working compositions for a gasdynamic CO2 laser with combustion. Combustion, Explosion, and Shock Waves 14(4): 435-440
Zhang, X.; Li, W.; Cui, W.; Liou, F. 2018: Modeling of worn surface geometry for engine blade repair using Laser-aided Direct Metal Deposition process. Manufacturing Letters 15: 1-4
Jillella, N.; Peddieson, J. 2012: Modeling of wrinkling of thin circular sheets. International Journal of Non-Linear Mechanics 47(1): 85-91
Tang, M.; Ahmed, R.; He, S. 2016: Modeling of yield-power-law fluid flow in a partially blocked concentric annulus. Journal of Natural Gas Science and Engineering 35: 555-566
Wei, Y.; Jones Jr., R.E.; Kryder, M.H. 1997: Modeling of yoke giant magnetoresistance heads. Journal of Applied Physics 81(8): 4918-4920
Nikolakis, V.; Vlachos, D.G.; Tsapatsis, M. 1999: Modeling of zeolite L crystallization using continuum time Monte Carlo simulations. The Journal of Chemical Physics 111(5): 2143-2150
Zhang, M.; Karjala, T.W.; Jain, P. 2010: Modeling of α-Olefin Copolymerization with Chain-Shuttling Chemistry Using Dual Catalysts in Stirred-Tank Reactors: Molecular Weight Distributions and Copolymer Composition. Industrial-Engineering Chemistry Research 49(17): 8135-8146
Golubovic, S.; Djoric-Veljkovic, S.; Stojadinovic, a. 1999: Modeling of γ-Irradiation and Lowered Temperature Effects in Power Vertical Double-Diffused Metal-Oxide-Semiconductor Transistors. Japanese Journal of Applied Physics 38(Part 1, No. 8): 4699-4702
Liang, X.; Wang, X. 2016: Modeling of θ → α alumina lateral phase transformation with applications to oxidation kinetics of Ni Al-based alloys. Materials-Design 112: 519-529
Kochetkov, O.; Serebryakov, B.; Ivanov, E.; Shchukin, A. 2009: Modeling of60Co migration in the aquifer. Radioprotection 44(5): 275-279
Cui, F.; Daskiran, C.; King, T.; Robinson, B.; Lee, K.; Katz, J.; Boufadel, M.C. 2020: Modeling oil dispersion under breaking waves. Part I: Wave hydrodynamics. Environmental Fluid Mechanics 20(6): 1527-1551
Salisu, A.A.; Oloko, T.F. 2015: Modeling oil price–US stock nexus: a VARMA–BEKK–AGARCH approach. Energy Economics 50: 1-12
Luz-Sant'Ana, I.; Román-Román, P.; Torres-Ruiz, F. 2017: Modeling oil production and its peak by means of a stochastic diffusion process based on the Hubbert curve. Energy 133: 455-470
Wang, J.; Shen, Y. 2010: Modeling oil spills transportation in seas based on unstructured grid, finite-volume, wave-ocean model. Ocean Modelling 35(4): 332-344
Li, J.; Ng, A.; Chan, W. 2011: Modeling old-age mortality risk for the populations of Australia and new Zealand: An extreme value approach. Mathematics and Computers in Simulation 81(7): 1325-1333
Krishna Mohan, T V.; Amit, R K. 2021: Modeling oligopsony market for end-of-life vehicle recycling. Sustainable Production and Consumption 25: 325-346
Kim, H.; Lu, G.; Naruse, I.; Yuan, J.; Ohtake, K. 2000: Modeling on Combustion Characteristics of Biocoalbriquettes. Journal of Energy Resources Technology 123(1): 27-31
Na, J.; Jang, Y. 2011: Modeling on Daily Traffic Volume of Local State Road Using Circular Mixture Distributions. Korean Journal of Applied Statistics 24(3): 547-557
Guo, W.; Zhang, L.; Zhu, M. 2010: Modeling on Dendrite Growth of Medium Carbon Steel during Continuous Casting. Steel research international 81(4): 265-277
Yu, C.L.; Wang, X.F.; Zhou, J.X.; Jiang, H.T.; Wang, Y. 2008: Modeling on Falling Velocity of Sodiumtetraborate Aqueous Solution Drops before the Gelation of PVA-Ti O2 Suspensions by the Runge-Kutta Method in Matlab 6.5. High-Performance Ceramics V: 1683-1685
Hanagal, D.D.; Bhalerao, N.N. 2021: Modeling on Generalized Extended Inverse Weibull Software Reliability Growth Model. Journal of Data Science 17(3): 575-592
Zhang, L.; Lei, L.; Xu, P. 2013: Modeling on Inverse Dynamic Process of Cut Tobacco Dryer. Advanced Materials Research 655-657: 1378-1382
Shrestha, D.C.; Acharya, S.; Gurung, D.B. 2020: Modeling on Metabolic Rate and Thermoregulation in Three Layered Human Skin during Carpentering, Swimming and Marathon. Applied Mathematics 11(08): 753-770
Su, X.; Wang, G.; Zhang, Y.; Li, J.; Rong, Y. 2013: Modeling on Stress Evolution of Step Part for Casting-heat Treatment Processes. Physics Procedia 50: 360-367
Xiao, J.K.; Wang, G.; Guo, X.K.; Fu, Q. 2013: Modeling on Threat Assessment System of Reentry-Course Ballistic Missile. Advanced Materials Research 722: 301-305
Mishra, K.; Dey, D.; Sarkar, B.R.; Bhattacharyya, B. 2018: Modeling on Volumetric Material Removal for Fabrication of Complex Shapes by EC Milling of Ti6Al4V. Journal of The Electrochemical Society 165(9): E388-E396
Okajima, T.; Sivakumar, S.; Shingyouchi, H.; Yamaguchi, K.; Kusaka, J.; Nagata, M. 2021: Modeling on a Three-Way Catalyst Used in Series Hybrid Electric Vehicles Focusing on its Catalytic Behavior at Cold Start. Industrial-Engineering Chemistry Research 60(39): 14069-14086
Cai, Q.; Mohamad, Z.; Yuan, Y. 2012: Modeling on an ecological food chain with recycling. Communications in Nonlinear Science and Numerical Simulation 17(12): 4856-4869
Biswas, R.N.; Islam, M.N.; Islam, M.N.; Shawon, S.S. 2020: Modeling on approximation of fluvial landform change impact on morphodynamics at Madhumati River Basin in Bangladesh. Modeling Earth Systems and Environment 7(1): 71-93
Hu, J.; Zhang, K.; Xu, Y.; Cheng, H.; Xu, G.; Li, H. 2019: Modeling on bearing behavior and damage evolution of single-lap bolted composite interference-fit joints. Composite Structures 212: 452-464
Li, J.; Yang, W.; An, H.; Chou, S. 2015: Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine. Applied Energy 160: 777-783
Chen, H.; Wang, L.; Chen, W. 2018: Modeling on building sector's carbon mitigation in China to achieve the 1.5 °C climate target. Energy Efficiency 12(2): 483-496
Kolivand, A.; Li, S.; Zhang, Q. 2021: Modeling on contact fatigue under starved lubrication condition. Meccanica 56(1): 211-225
He, L.; Wang, G.; Rong, Y. 2011: Modeling on directional solidification of solar cell grade multicrystalline silicon ingot casting. Journal of Shanghai Jiaotong University (Science) 16(3): 316-319
Li, J.; Xie, Z.; Li, S.; Zang, Y. 2016: Modeling on dynamic recrystallization of aluminium alloy 7050 during hot compression based on cellular automaton. Journal of Central South University 23(3): 497-507
Jakariya, M.; Housna, A.; Islam, M.N.; Ahsan, G.U.; Mahmud, K. 2018: Modeling on environmental-economic effectiveness of Vacutug technology of fecal sludge management at Dhaka city in Bangladesh. Modeling Earth Systems and Environment 4(1): 49-60
Zhou, S.; Zhang, J.; Song, W.; Feng, Z. 2019: Modeling on heat transfer performance of supercritical compressed air in a casing heat exchanger. Energy Procedia 158: 4611-4616
Biswas, R.N.; Islam, M.N.; Islam, M.N. 2018: Modeling on management strategies for spatial assessment of earthquake disaster vulnerability in Bangladesh. Modeling Earth Systems and Environment 4(4): 1377-1401
Biswas, R.N.; Islam, M.N.; Islam, M.N. 2017: Modeling on management strategies of slope stability and susceptibility to landslides catastrophe at hilly region in Bangladesh. Modeling Earth Systems and Environment 3(3): 977-998
Asitatikie, A.N.; Nigussie, E.D. 2020: Modeling on naturalization of inflow and outflow nutrients sources of Blue Nile River at the Lake Tana in Basaltic Plateau of Ethiopia. Modeling Earth Systems and Environment 7(4): 2283-2295
Zhang, Z.; Xiang, H.; Shi, Z. 2015: Modeling on piezoelectric energy harvesting from pavements under traffic loads. Journal of Intelligent Material Systems and Structures 27(4): 567-578
Qingquan, L.; Jiachun, L. 2006: Modeling on runoff concentration caused by rainfall on hillslopes and application in maoping slop. Progress in Natural Science 16(10): 1056-1065
Ma, Y.; He, J.; Yu, Q. 2019: Modeling on social popularity and achievement: a case study on table tennis. Physica A: Statistical Mechanics and its Applications 524: 235-245
Gui, L.; Long, M.; Chen, D.; Huang, Y.; Liu, T.; Chen, H.; Duan, H. 2017: Modeling on solute enrichment and inclusion precipitation during the solidification process of high sulfur steel slab. Journal of Materials Research 32(20): 3854-3863
Wang, Y.; Gu, H.; Zhao, J.; Cheng, Z. 2016: Modeling on spare parts inventory control under condition based maintenance strategy. Journal of Shanghai Jiaotong University (Science) 21(5): 600-604
Wang, S.; Ni, P.; Yang, H.; Xu, Y. 2011: Modeling on spatial block topological identification and the irprogressive failure analysis of slopeand cavernrock mass. Procedia Engineering 10: 1509-1514
Parthiban, A.; Dhanasekaran, C.; Sivaganesan, S.; Sathish, S. 2020: Modeling on surface cut quality of CO2 laser cutting for Austenitic Stainless steel sheet. Materials Today: Proceedings 21: 823-827
Deng, Y.; Li, W.; Zhang, X.; Li, Y.; Kou, H.; Shao, J.; Zhang, X.; Qu, Z. 2018: Modeling on temperature-dependent first matrix cracking stress for fiber reinforced ceramics considering fiber debonding and residual thermal stress. Ceramics International 44(17): 21666-21674
Holub, H.W.; Tappeiner, G. 1997: Modeling on the Basis of Models. Review of Income and Wealth 43(4): 505-510
Jeong, J.; Lee, J.; Kim, W. 2003: Modeling on the Counteractive Facilitated Transport of Co in Co–Ni Mixtures by Hollow-Fiber Supported Liquid Membrane. Separation Science and Technology 38(3): 499-517
Lee, K.S. 2011: Modeling on the Cyclic Operation of Standing Column Wells Under Regional Groundwater Flow. Journal of Hydrodynamics 23(3): 295-301
Bai, Y.; He, F. 2015: Modeling on the Effect of Coal Loads on Kinetic Energy of Balls for Ball Mills. Energies 8(7): 6859-6880
Ivanov, .; Mitsyn, G.; Timoshenko, G.; Bulynina, .; Krylov, A.; Krasavin, .; ; , 2017: Modeling on the Phasotron Protons Beam of the Neutron Fields Generated Inside Spacecraft. Aerospace and Environmental Medicine 51(2): 20-25
Cheng, H.; Hu, C.; Lin, Y.; Lin, I. 1998: Modeling on the Resistivity-Temperature Properties of (Pb0.6Sr0.4)Ti O3Materials Prepared by the Rapid Thermal Sintering Process. Japanese Journal of Applied Physics 37(Part 1, No. 4A): 1932-1938
Zhang, L.; Gao, C.; Li, C.; Peng, J. 2014: Modeling on the Solidification of 1J51 Fe-Ni-Based Alloy Ingot Under Vacuum Conditions. JOM 66(7): 1175-1183
Chandra, K.; Reibman, A. 1999: Modeling one- and two-layer variable bit rate video. IEEE/ACM Transactions on Networking 7(3): 398-413
Qiao, J.; Meng, Y.; Chen, H.; Huang, H.; Li, G. 2016: Modeling one-mode projection of bipartite networks by tagging vertex information. Physica A: Statistical Mechanics and its Applications 457: 270-279
Richard, M.; Chebat, J. 2016: Modeling online consumer behavior: Preeminence of emotions and moderating influences of need for cognition and optimal stimulation level. Journal of Business Research 69(2): 541-553
Li, L.; Gu, K.; Zeng, A.; Fan, Y.; Di, Z. 2018: Modeling online social signed networks. Physica A: Statistical Mechanics and its Applications 495: 345-352
Zhang, R.; Guo, D.; Gao, W.; Liu, L. 2016: Modeling ontology evolution via Pi-Calculus. Information Sciences 346-347: 286-301
Liu, L.; Zhang, P.; Fan, R.; Zhang, R.; Yang, H. 2014: Modeling ontology evolution with Set Pi. Information Sciences 255: 155-169
Eckert, C.; Gatzert, N. 2017: Modeling operational risk incorporating reputation risk: An integrated analysis for financial firms. Insurance: Mathematics and Economics 72: 122-137
Kamath, M.; Sanders, J.L. 1991: Modeling operator/workstation interference in asynchronous automatic assembly systems. Discrete Event Dynamic Systems 1(1): 93-124
Goosmann, R.W.; Gaskell, C.M. 2007: Modeling optical and UV polarization of AGNs. Astronomy-Astrophysics 465(1): 129-145
Seifi Laleh, M.; Razaghi, M.; Bevrani, H. 2020: Modeling optical filters based on serially coupled microring resonators using radial basis function neural network. Soft Computing 25(1): 585-598
Mahmood, M F. 2000: Modeling optical solitons in a practical lossy fiber. Canadian Journal of Physics 78(12): 1087-1090
Amiri, I.S.; Ariannejad, M.; Jalil, M.; Ali, J.; Yupapin, P. 2018: Modeling optical transmissivity of graphene grate in on-chip silicon photonic device. Results in Physics 9: 1044-1049
Marti, J.; Capmany, J. 1995: Modeling optically prefiltered AM subcarrier multiplexed systems. IEEE Transactions on Microwave Theory and Techniques 43(9): 2249-2256
Diaz, K.; Leyva, A.; Cruz, C.; Ramirez-Jimenez, F. 2005: Modeling optimal characteristics of a-Si:H semiconductor detectors for X-ray detection. IEEE Transactions on Nuclear Science 52(5): 2063-2067
Mushayabasa, S. 2015: Modeling optimal intervention strategies for property crime. International Journal of Dynamics and Control 5(3): 832-841
Navarrete, E. 2012: Modeling optimal pine stands harvest under stochastic wood stock and price in Chile. Forest Policy and Economics 15: 54-59
Pachauri, B.; Kumar, A.; Dhar, J. 2013: Modeling optimal release policy under fuzzy paradigm in imperfect debugging environment. Information and Software Technology 55(11): 1974-1980
Wu, Z.; Hanaoka, S.; Shuai, B. 2021: Modeling optimal thresholds for minimum traffic guarantee in public–private partnership (PPP) highway projects. The Engineering Economist: 1-23
Qiu, G.; Kandhai, D.; Sloot, P. 2010: Modeling options markets by focusing on active tradersr. Procedia Computer Science 1(1): 2457-2462
Lagnika, S.B.M.; Hausler, R.; Glaus, M. 2017: Modeling or dynamic simulation: a tool for environmental management in mining?. Journal of Integrative Environmental Sciences 14(1): 19-37
Fasano, G.; D'Errico, M. 2009: Modeling orbital relative motion to enable formation design from application requirements. Celestial Mechanics and Dynamical Astronomy 105(1-3): 113-139
Chien, C.; Wu, J.; Weng, Y. 2010: Modeling order assignment for semiconductor assembly hierarchical outsourcing and developing the decision support system. Flexible Services and Manufacturing Journal 22(1-2): 109-139
Tavares, L.M.; de Carvalho, R.M. 2011: Modeling ore degradation during handling using continuum damage mechanics. International Journal of Mineral Processing 101(1-4): 21-27
Tavares, L.M.; de Carvalho, R.M. 2012: Modeling ore degradation during handling using continuum damage mechanics. International Journal of Mineral Processing 112-113: 1-6
Chrit, M.; Sartelet, K.; Sciare, J.; Majdi, M.; Nicolas, J.; Petit, J.; Dulac, F. 2018: Modeling organic aerosol concentrations and properties during winter 2014 in the northwestern Mediterranean region. Atmospheric Chemistry and Physics 18(24): 18079-18100
Chen, S.; Brune, W.H.; Lambe, A.T.; Davidovits, P.; Onasch, T.B. 2013: Modeling organic aerosol from the oxidation of α-pinene in a Potential Aerosol Mass (PAM) chamber. Atmospheric Chemistry and Physics 13(9): 5017-5031
Lannuque, V.; Couvidat, F.; Camredon, M.; Aumont, B.; Bessagnet, B. 2020: Modeling organic aerosol over Europe in summer conditions with the VBS-GECKO parameterization: sensitivity to secondary organic compound properties and IVOC (intermediate-volatility organic compound) emissions. Atmospheric Chemistry and Physics 20(8): 4905-4931
Hodzic, A.; Jimenez, J.L.; Madronich, S.; Canagaratna, M.R.; DeCarlo, P.F.; Kleinman, L.; Fast, J. 2010: Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation. Atmospheric Chemistry and Physics 10(12): 5491-5514
Han, Z.; Xie, Z.; Wang, G.; Zhang, R.; Tao, J. 2016: Modeling organic aerosols over east China using a volatility basis-set approach with aging mechanism in a regional air quality model. Atmospheric Environment 124: 186-198
Harrelson, T.F.; Moulé, A.J.; Faller, R. 2017: Modeling organic electronic materials: bridging length and time scales. Molecular Simulation 43(10-11): 730-742
Völker, C.; Tagliabue, A. 2015: Modeling organic iron-binding ligands in a three-dimensional biogeochemical ocean model. Marine Chemistry 173: 67-77
Maiello, M.J. 1991: Modeling organizational culture in catholic social services. Social Thought 17(1): 3-11
Popova, V.; Sharpanskykh, A. 2010: Modeling organizational performance indicators. Information Systems 35(4): 505-527
Zhou, J.; Gu, J. 2004: Modeling orientation fields of fingerprints with rational complex functions. Pattern Recognition 37(2): 389-391
Auerbach, S.M.; Metiu, H.I. 1997: Modeling orientational randomization in zeolites: a new probe of intracage mobility, diffusion and cation disorder. The Journal of Chemical Physics 106(7): 2893-2905
Jones, L.K.; Gartner, N.H.; Shubov, M.; Stamatiadis, C.; Einstein, D. 2018: Modeling origin-destination uncertainty using network sensor and survey data and new approaches to robust control. Transportation Research Part C: Emerging Technologies 94: 121-132
Zhang, J.; Jurzyk, A.; Helgeson, M.E.; Leal, L.G. 2021: Modeling orthogonal superposition rheometry to probe nonequilibrium dynamics of entangled polymers. Journal of Rheology 65(5): 983-998
O'Connor, D.T.; Elkhodary, K.I.; Fouad, Y.; Greene, M.S.; Sabet, F.A.; Qian, J.; Zhang, Y.; Liu, W.K.; Jasiuk, I. 2016: Modeling orthotropic elasticity, localized plasticity and fracture in trabecular bone. Computational Mechanics 58(3): 423-439
Xu, B.; Chen, D.; Behrens, P.; Ye, W.; Guo, P.; Luo, X. 2018: Modeling oscillation modal interaction in a hydroelectric generating system. Energy Conversion and Management 174: 208-217
Stubblefield, A.G.; Creyts, T.T.; Kingslake, J.; Spiegelman, M. 2019: Modeling oscillations in connected glacial lakes. Journal of Glaciology 65(253): 745-758
Tsokos, A.; Narayanan, S.; Kosmidis, I.; Baio, G.; Cucuringu, M.; Whitaker, G.; Király, F. 2018: Modeling outcomes of soccer matches. Machine Learning 108(1): 77-95
Nauha, E.K.; Alopaeus, V. 2015: Modeling outdoors algal cultivation with compartmental approach. Chemical Engineering Journal 259: 945-960
Wang, Y.; Feng, H. 2014: Modeling outlier formation in scanning reflective surfaces using a laser stripe scanner. Measurement 57: 108-121
Du, Q.; Tang, K.; Marioara, C.D.; Andersen, S.J.; Holmedal, B.; Holmestad, R. 2017: Modeling over-ageing in Al-Mg-Si alloys by a multi-phase CALPHAD-coupled Kampmann-Wagner Numerical model. Acta Materialia 122: 178-186
Zou, Y.; Wu, L.; Lord, D. 2015: Modeling over-dispersed crash data with a long tail: Examining the accuracy of the dispersion parameter in Negative Binomial models. Analytic Methods in Accident Research 5-6: 1-16
Kumar, C.S.; Harisankar, S. 2019: Modeling over-dispersed datasets using generalized geometric distributions. Journal of Statistical Computation and Simulation 90(4): 606-623
Zhu, F. 2012: Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models. Journal of Mathematical Analysis and Applications 389(1): 58-71
Yang, K.; Kang, Y.; Wang, D.; Li, H.; Diao, Y. 2019: Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes. Metrika 82(7): 863-889
Yang, C.; Jiao, G.; Wang, B. 2011: Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites. Acta Mechanica Sinica 27(3): 382-388
Blint, R.J.; Haworth, D.C. 2000: Modeling oxidation of exhaust gases diluted by air under exhaust manifold conditions. Proceedings of the Combustion Institute 28(2): 2451-2457
Belousov, V.V.; Klimashin, A.A.; Fedorov, S.V. 2015: Modeling oxygen Ion transport of molten oxide membranes based on V2O5. Ionics 22(3): 369-376
Singh, S.; Nganbe, M.; Chen, K. 2021: Modeling oxygen permeability through topcoat and thermally grown oxide in dense Yb 2 Si 2 O 7 environmental barrier coatings. Journal of the American Ceramic Society 104(12): 6481-6495
Magee, M.R.; McIntyre, P.B.; Wu, C.H. 2018: Modeling oxythermal stress for cool-water fishes in lakes using a cumulative dosage approach. Canadian Journal of Fisheries and Aquatic Sciences 75(8): 1303-1312
Lee, S.; Kim, S.; Trainer, M.; Frost, G.J.; McKeen, S.A.; Cooper, O.R.; Flocke, F.; Holloway, J.S.; Neuman, J.A.; Ryerson, T.; Senff, C.J.; Swanson, A.L.; Thompson, A.M. 2011: Modeling ozone plumes observed downwind of new York City over the North Atlantic Ocean during the ICARTT field campaign. Atmospheric Chemistry and Physics 11(14): 7375-7397
Xue, Z.; He, R.; Fennel, K.; Cai, W.; Lohrenz, S.; Huang, W.; Tian, H.; Ren, W.; Zang, Z. 2016: Modeling p CO2 variability in the Gulf of Mexico. Biogeosciences 13(15): 4359-4377
Kaczer, B.; De Keersgieter, A.; Degraeve, R.; Crupi, F.; Groeseneken, G. 2004: Modeling p FET currents after soft breakdown at different gate locations. Microelectronic Engineering 72(1-4): 125-129
Saad Saoud, L.; Rahmoune, F.; Tourtchine, V.; Baddari, K. 2011: Modeling p H Neutralization Process using Fuzzy Dynamic Neural Units Approaches. International Journal of Computer Applications 28(4): 22-29
Grosse Daldrup, J.; Held, C.; Sadowski, G.; Schembecker, G. 2011: Modeling p H and Solubilities in Aqueous Multisolute Amino Acid Solutions. Industrial-Engineering Chemistry Research 50(6): 3503-3509
Moguel‐Castañeda, J. G.; Puebla, H.; Méndez‐Acosta, H. O.; Hernandez‐Martinez, E. 2020: Modeling p H and temperature effects on the anaerobic treatment of tequila vinasses. Journal of Chemical Technology-Biotechnology 95(7): 1953-1961
Nie, J.; Loh, A.; Hang, C. 1996: Modeling p H neutralization processes using fuzzy-neural approaches. Fuzzy Sets and Systems 78(1): 5-22
Xu, X.; Peng, C.; Liu, H.; Hu, Y. 2009: Modeling p VT Properties and Phase Equilibria for Systems Containing Ionic Liquids Using a new Lattice-Fluid Equation of State. Industrial-Engineering Chemistry Research 48(24): 11189-11201
Krishnan, S.; Vasileska, D.; Fischetti, M.V. 2007: Modeling p-channel Si Ge MOSFETs by taking into account the band-structure and the size quantization effects self-consistently. Journal of Computational Electronics 5(4): 435-438
Arakelian, V.; Moschos, D. 2008: Modeling pairwise convergence: a Bayesian approach with an application to Greek inflation. Economics Letters 99(2): 340-344
Vrac, M.; Naveau, P.; Drobinski, P. 2007: Modeling pairwise dependencies in precipitation intensities. Nonlinear Processes in Geophysics 14(6): 789-797
Gao, T.; Kitchin, J.R. 2018: Modeling palladium surfaces with density functional theory, neural networks and molecular dynamics. Catalysis Today 312: 132-140
Schab, A.; Gauthier, S.; Pascual, J.; Valeria, O.; Bergeron, Y.; Raulier, F. 2021: Modeling paludification and fire impacts on the forest productivity of a managed landscape using valuable indicators: the example of the Clay Belt. Canadian Journal of Forest Research 51(9): 1347-1356
Zhu, G.; Gao, G.; Wu, G.; Gu, Z.; Wu, J.; Hao, J. 2016: Modeling pantograph–catenary arcing. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 230(7): 1687-1697
Makowski, M. 2000: Modeling paradigms applied to the analysis of European air quality. European Journal of Operational Research 122(2): 219-241
Zou, B.; Xu, X.; (Yale) Gong, Y.; De Koster, R. 2016: Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems. European Journal of Operational Research 254(1): 51-67
Glassman, J.D.; Moreyra Garlock, M.E.; Aziz, E.M.; Kodur, V.K. 2016: Modeling parameters for predicting the postbuckling shear strength of steel plate girders. Journal of Constructional Steel Research 121: 136-143
Richards, J. 1977: Modeling parametric processes- A tutorial review. Proceedings of the IEEE 65(11): 1549-1557
Oatley, K. 1981: Modeling paranoia: the cargo cult metaphor. Behavioral and Brain Sciences 4(4): 545-546
Pang, H.; Khani, A. 2016: Modeling park-and-ride location choice of heterogeneous commuters. Transportation 45(1): 71-87
Gan, G.; Valdez, E.A. 2017: Modeling partial Greeks of variable annuities with dependence. Insurance: Mathematics and Economics 76: 118-134
Miguéis, V.; Van den Poel, D.; Camanho, A.; Falcão e Cunha, J. 2012: Modeling partial customer churn: on the value of first product-category purchase sequences. Expert Systems with Applications 39(12): 11250-11256
Callender, G.; Lewin, P.L.; Hunter, J.A.; Rapisarda, P. 2017: Modeling partial discharge in a three-phase cable joint experiment with minimal adjustable parameters. IEEE Transactions on Dielectrics and Electrical Insulation 24(1): 279-287
Liu, Y.; Fung, P. 2003: Modeling partial pronunciation variations for spontaneous Mandarin speech recognition. Computer Speech-Language 17(4): 357-379
Knudsen, E.; Shashank; Pitsch, H. 2015: Modeling partially premixed combustion behavior in multiphase LES. Combustion and Flame 162(1): 159-180
Su, J.G.; Hopke, P.K.; Tian, Y.; Baldwin, N.; Thurston, S.W.; Evans, K.; Rich, D.Q. 2015: Modeling particulate matter concentrations measured through mobile monitoring in a deletion/substitution/addition approach. Atmospheric Environment 122: 477-483
Ramechecandane, S.; Beghein, C.; Eswari, N. 2014: Modeling particulate removal in plate-plate and wire-plate electrostatic precipitators. The International Journal of Multiphysics 8(2): 145-168
Guarino, N.; Pribbenow, S.; Vieu, L. 1996: Modeling parts and wholes. Data-Knowledge Engineering 20(3): 257-258
Shi, P.; Duan, K.; Nicholson, K.N.; Han, B.; Klaus, N.; Yang, J. 2020: Modeling past and future variation of glaciers in the Dongkemadi Ice Field on central Tibetan Plateau from 1989 to 2050. Arctic, Antarctic, and Alpine Research 52(1): 191-209
Huynh, K. 2020: Modeling past-dependent partial repairs for condition-based maintenance of continuously deteriorating systems. European Journal of Operational Research 280(1): 152-163
Kreiman, J.; Gerratt, B.R. 1995: Modeling pathologic vocal quality. Part i. Journal of the Acoustical Society of America 97(5): 3364-3365
Chahal, H.; Mehta, S. 2013: Modeling patient satisfaction construct in the Indian health care context. International Journal of Pharmaceutical and Healthcare Marketing 7(1): 75-92
Yavas, U.; Babakus, E. 2009: Modeling patronage behavior: a tri‐partite conceptualization. Journal of Consumer Marketing 26(7): 516-526
Jun, D.B.; Kim, J.; Park, M.H.; Cha, K.C. 2012: Modeling patronage shift to a new entrant for predicting disproportionate losses for incumbent outlets. International Journal of Forecasting 28(3): 660-674
Al-Habashna, A.; Wainer, G. 2015: Modeling pedestrian behavior with Cell-DEVS: theory and applications. SIMULATION 92(2): 117-139
Chen, Y.; Chen, N.; Wang, Y.; Wang, Z.; Feng, G. 2015: Modeling pedestrian behaviors under attracting incidents using cellular automata. Physica A: Statistical Mechanics and its Applications 432: 287-300
Cao, S.; Song, W.; Lv, W. 2016: Modeling pedestrian evacuation with guiders based on a multi-grid model. Physics Letters A 380(4): 540-547
Solmaz, G.; Turgut, D. 2017: Modeling pedestrian mobility in disaster areas. Pervasive and Mobile Computing 40: 104-122
Tang, T.; Shao, Y.; Chen, L. 2017: Modeling pedestrian movement at the hall of high-speed railway station during the check-in process. Physica A: Statistical Mechanics and its Applications 467: 157-166
Kielar, P.M.; Borrmann, A. 2016: Modeling pedestrians' interest in locations: a concept to improve simulations of pedestrian destination choice. Simulation Modelling Practice and Theory 61: 47-62
Ng, K.W.; Harris, R.; Wraith, A.E.; Kapusta, J.P.T.; Parra, R. 2005: Modeling peirce-smith converter operating costs. JOM 57(7): 52-57
Pain, J.; Gilleron, F. 2019: Modeling penetrating collisions in the standard line broadening impact theory for hydrogen. High Energy Density Physics 30: 52-59
Khashman, Z.; Khashman, A. 2017: Modeling people's anticipation for Cyprus peace mediation outcome using a neural model. Procedia Computer Science 120: 734-741
Lin, C.; Chiu, C.; Joe, S. 2009: Modeling perceived job productivity and its antecedents considering gender as a moderator. The Social Science Journal 46(1): 192-200
Paz, I.; Nebot, .; Mugica, F.; Romero, E. 2018: Modeling perceptual categories of parametric musical systems. Pattern Recognition Letters 105: 217-225
Tartaglia, E.M.; Aberg, K.C.; Herzog, M.H. 2009: Modeling perceptual learning: Why mice do not play backgammon. Learning-Perception 1(1): 155-163
Sánchez del Río, M.; Ferrero, C.; Chen, G.; Cerrina, F. 1994: Modeling perfect crystals in transmission geometry for synchrotron radiation monochromator design. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 347(1-3): 338-343
Clematis, A.; Corana, A. 1999: Modeling performance of heterogeneous parallel computing systems. Parallel Computing 25(9): 1131-1145
Arambakam, R.; Tafreshi, H.V.; Pourdeyhimi, B. 2014: Modeling performance of multi-component fibrous insulations against conductive and radiative heat transfer. International Journal of Heat and Mass Transfer 71: 341-348
Castiglione, A.; Gribaudo, M.; Iacono, M.; Palmieri, F. 2014: Modeling performances of concurrent big data applications. Software: Practice and Experience 45(8): 1127-1144
Jesionek, K.; Szczerba, D.; Wasilewski, J.; Kostur, M. 2017: Modeling perfusion by fractal tree and stochastic dynamics. Procedia Computer Science 108: 2468-2472
Guazzini, A.; Liò, P.; Passarella, A.; Conti, M. 2010: Modeling perisaccadic time perception. Journal of Biomedical Science and Engineering 03(12): 1133-1142
Farina, A.; Fusi, L.; Fasano, A.; Ceretani, A.; Rosso, F. 2016: Modeling peristaltic flow in vessels equipped with valves: Implications for vasomotion in bat wing venules. International Journal of Engineering Science 107: 1-12
Sun, Z.; Zhao, L.; Hu, G.; Qiao, Y.; Du, E.; Zou, D.; Xie, C. 2019: Modeling permafrost changes on the Qinghai–Tibetan plateau from 1966 to 2100: a case study from two boreholes along the Qinghai–Tibet engineering corridor. Permafrost and Periglacial Processes 31(1): 156-171
Hu, G.; Zhao, L.; Wu, X.; Li, R.; Wu, T.; Xie, C.; Pang, Q.; Xiao, Y.; Li, W.; Qiao, Y.; Shi, J. 2015: Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau. Science China Earth Sciences 58(12): 2309-2326
Sagne, C.; Fargues, C.; Broyart, B.; Lameloise, M.; Decloux, M. 2009: Modeling permeation of volatile organic molecules through reverse osmosis spiral-wound membranes. Journal of Membrane Science 330(1-2): 40-50
Nelson, P.H.; Tsapatsis, M.; Auerbach, S.M. 2001: Modeling permeation through anisotropic zeolite membranes with nanoscopic defects. Journal of Membrane Science 184(2): 245-255
Huang, Q.; Fang, Y. 2009: Modeling personalized head-related impulse response using support vector regression. Journal of Shanghai University (English Edition) 13(6): 428-432
Almet, A.A.; Maini, P.K.; Moulton, D.E.; Byrne, H.M. 2020: Modeling perspectives on the intestinal crypt, a canonical system for growth, mechanics, and remodeling. Current Opinion in Biomedical Engineering 15: 32-39
Khan, F.Z.A.; Manzoor, S.A.; Akmal, M.; Imran, M.U.; Taqi, M.; Manzoor, S.A.; Lukac, M.; Gul, H.T.; Joseph, S.V. 2020: Modeling pesticide use intention in Pakistani farmers using expanded versions of the theory of planned behavior. Human and Ecological Risk Assessment: An International Journal 27(3): 687-707
Yoo, D.; Lee, W.G.; Lee, B. 2019: Modeling phase behavior of poly(ethylene glycol) in supercritical fluids. Journal of Molecular Liquids 283: 332-337
Lee, B. 2018: Modeling phase behavior of poly(lactic acid) in supercritical fluids. Polymer 147: 164-169
Hu, X.; Patnaik, S.S. 2014: Modeling phase change material in micro-foam under constant temperature condition. International Journal of Heat and Mass Transfer 68: 677-682
Watson, H.A.; Barton, P.I. 2017: Modeling phase changes in multistream heat exchangers. International Journal of Heat and Mass Transfer 105: 207-219
Ni, D.; Hsieh, H.K.; Jiang, T. 2018: Modeling phase diagrams as stochastic processes with application in vehicular traffic flow. Applied Mathematical Modelling 53: 106-117
Wang, P.; Anderko, A.; Springer, R.; Young, R. 2006: Modeling phase equilibria and speciation in mixed-solvent electrolyte systems: II. Liquid–liquid equilibria and properties of associating electrolyte solutions. Journal of Molecular Liquids 125(1): 37-44
Tsivintzelis, I.; Ali, S.; Kontogeorgis, G.M. 2015: Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part IV. Applications to mixtures of CO2 with alkanes. Fluid Phase Equilibria 397: 1-17
Roa Pinto, J.S.; Bachaud, P.; Fargetton, T.; Ferrando, N.; Jeannin, L.; Louvet, F. 2021: Modeling phase equilibrium of hydrogen and natural gas in brines: Application to storage in salt caverns. International Journal of Hydrogen Energy 46(5): 4229-4240
Wu, X.; Grummon, D.S.; Pence, T.J. 1999: Modeling phase fraction shakedown during thermomechanical cycling of shape memory materials. Materials Science and Engineering: A273-275: 245-250
Mishchenko, M.I.; Travis, L.D.; Kahn, R.A.; West, R.A. 1997: Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. Journal of Geophysical Research: Atmospheres 102(D 14): 16831-16847
Manzanarez, H.; Mericq, J.; Guenoun, P.; Chikina, J.; Bouyer, D. 2017: Modeling phase inversion using Cahn-Hilliard equations – Influence of the mobility on the pattern formation dynamics. Chemical Engineering Science 173: 411-427
Cardoso-Ugarte, G.A.; Ramírez-Corona, N.; López-Malo, A.; Palou, E.; San Martín-González, M.F.; Jiménez-Munguía, M.T. 2017: Modeling phase separation and droplet size of W/O emulsions with oregano essential oil as a function of its formulation and homogenization conditions. Journal of Dispersion Science and Technology 39(7): 1065-1073
Boukaré, C.; Ricard, Y. 2017: Modeling phase separation and phase change for magma ocean solidification dynamics. Geochemistry, Geophysics, Geosystems 18(9): 3385-3404
McCormack, R.; Burton, B.P. 1997: Modeling phase stability in perovskites. Computational Materials Science 8(1-2): 153-160
Priya, P.; Johnson, D.R.; Krane, M.J. 2017: Modeling phase transformation kinetics during homogenization of aluminum alloy 7050. Computational Materials Science 138: 277-287
Wienke, B. 1992: Modeling phase volume constraints under repetitive decompression. Mathematical and Computer Modelling 16(3): 109-120
Vlasenko, B.; Prylipko, D.; Böck, R.; Wendemuth, A. 2014: Modeling phonetic pattern variability in favor of the creation of robust emotion classifiers for real-life applications. Computer Speech-Language 28(2): 483-500
Duan, R.; Fedler, C.B. 2020: Modeling phosphorus adsorption onto polyaluminium chloride water treatment residuals. Water Supply 21(1): 458-469
Harrison, J. A.; Beusen, A.H.; Fink, G.; Tang, T.; Strokal, M.; Bouwman, A. F.; Metson, G. S.; Vilmin, L. 2019: Modeling phosphorus in rivers at the global scale: recent successes, remaining challenges, and near-term opportunities. Current Opinion in Environmental Sustainability 36: 68-77
Chu, F.; Li, S.; Chen, H.; Yang, L.; Ola, O.; Maroto-Valer, M.; Du, X.; Yang, Y. 2017: Modeling photocatalytic conversion of carbon dioxide in bubbling twin reactor. Energy Conversion and Management 149: 514-525
Pettersson, L.A.A.; Roman, L.S.; Inganäs, O. 1999: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. Journal of Applied Physics 86(1): 487-496
Parel, T.S.; Danos, L.; Fang, L.; Markvart, T. 2014: Modeling photon transport in fluorescent solar concentrators. Progress in Photovoltaics: Research and Applications 23(10): 1357-1366
Xin, Q.; Gong, P.; Li, W. 2015: Modeling photosynthesis of discontinuous plant canopies by linking the Geometric Optical Radiative Transfer model with biochemical processes. Biogeosciences 12(11): 3447-3467
Cox, T.J.S.; Soetaert, K.; Vanderborght, J.; Kromkamp, J.C.; Meire, P. 2010: Modeling photosynthesis-irradiance curves: Effects of temperature, dissolved silica depletion, and changing community assemblage on community photosynthesis. Limnology and Oceanography: Methods 8(8): 424-440
Copper, M.; Delamere, P.A.; Overcast-Howe, K. 2016: Modeling physical chemistry of the Io plasma torus in two dimensions. Journal of Geophysical Research: Space Physics 121(7): 6602-6619
Cao, J.; Voth, G.A. 1995: Modeling physical systems by effective harmonic oscillators: the optimized quadratic approximation. The Journal of Chemical Physics 102(8): 3337-3348
Mathews, A.; Phlips, E.; Badylak, S. 2015: Modeling phytoplankton productivity in a shallow, microtidal, subtropical estuary. Marine Ecology Progress Series 531: 63-80
Mayo, A.W.; Hanai, E.E. 2017: Modeling phytoremediation of nitrogen-polluted water using water hyacinth ( Eichhornia crassipes ). Physics and Chemistry of the Earth, Parts A/B/C 100: 170-180
Cherin, N.; Cordier, F.; Melkemi, M. 2014: Modeling piecewise helix curves from 2D sketches. Computer-Aided Design 46: 258-262
Liu, C.; Prévost, J.H.; Sukumar, N. 2018: Modeling piecewise planar fault discontinuities without element-partitioning in 3D reservoir-geomechanical models. International Journal for Numerical and Analytical Methods in Geomechanics 43(2): 530-543
Lien, J.; York, A.; Fang, T.; Buckner, G.D. 2010: Modeling piezoelectric actuators with Hysteretic Recurrent Neural Networks. Sensors and Actuators A: Physical 163(2): 516-525
Haase, C.S.; Meyer, G.W. 1992: Modeling pigmented materials for realistic image synthesis. ACM Transactions on Graphics 11(4): 305-335
Plaza, J.M.; Rochelle, G.T. 2011: Modeling pilot plant results for CO2 capture by aqueous piperazine. Energy Procedia 4: 1593-1600
Madan, T.; Van Wagener, D.H.; Chen, E.; Rochelle, G.T. 2013: Modeling pilot plant results for CO2 stripping using piperazine in two stage flash. Energy Procedia 37: 386-399
Lee, H.; Lowengrub, J.S.; Goodman, J. 2002: Modeling pinchoff and reconnection in a Hele-Shaw cell. I. the models and their calibration. Physics of Fluids 14(2): 492-513
Lee, H.; Lowengrub, J.S.; Goodman, J. 2002: Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime. Physics of Fluids 14(2): 514-545
Pang, H.; Wu, Z.; Cai, L. 2012: Modeling pitch contour of Chinese Mandarin sentences with the PENTA model. Tsinghua Science and Technology 17(2): 218-224
Tsai, M.; De Flaviis, F.; Fordham, O.; Alexopoulos, N. 1997: Modeling planar arbitrarily shaped microstrip elements in multilayered media. IEEE Transactions on Microwave Theory and Techniques 45(3): 330-337
Fournier, J.; Galatola, P. 2005: Modeling planar degenerate wetting and anchoring in nematic liquid crystals. Europhysics Letters (EPL) 72(3): 403-409
Dontsov, E.; Peirce, A. 2017: Modeling planar hydraulic fractures driven by laminar-to-turbulent fluid flow. International Journal of Solids and Structures 128: 73-84
Pogossian, S.P.; Le Gall, H. 2003: Modeling planar leaky optical waveguides. Journal of Applied Physics 93(5): 2337-2342
Gummer, A.; Sauer, B. 2012: Modeling planar slider-crank mechanisms with clearance joints in Recur Dyn. Multibody System Dynamics 31(2): 127-145
Le Fouest, V.; Zakardjian, B.; Xie, H.; Raimbault, P.; Joux, F.; Babin, M. 2013: Modeling plankton ecosystem functioning and nitrogen fluxes in the oligotrophic waters of the Beaufort Sea, Arctic Ocean: a focus on light-driven processes. Biogeosciences 10(7): 4785-4800
Grosfeld, I. 1987: Modeling planners' investment behavior: Poland, 1956–1981. Journal of Comparative Economics 11(2): 180-191
Bowen, W. 1993: Modeling plant and soil systems. Agricultural Systems 41(4): 526-527
Stella, I.R.; Ghosh, M. 2019: Modeling plant disease with biological control of insect pests. Stochastic Analysis and Applications 37(6): 1133-1154
Bazzichetto, M.; Malavasi, M.; Barták, V.; Acosta, A.T.R.; Moudrý, V.; Carranza, M.L. 2018: Modeling plant invasion on Mediterranean coastal landscapes: An integrative approach using remotely sensed data. Landscape and Urban Planning 171: 98-106
Jackson, M.; Chen-Charpentier, B.M. 2017: Modeling plant virus propagation with delays. Journal of Computational and Applied Mathematics 309: 611-621
Fatichi, S.; Pappas, C.; Ivanov, V.Y. 2015: Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale. WIREs Water 3(3): 327-368
Stangeby, P.C. 2002: Modeling plasma contact with the main vessel walls of a divertor tokamak. Physics of Plasmas 9(8): 3489-3507
Duffy, D. 2009: Modeling plasma facing materials for fusion power. Materials Today 12(11): 38-44
Colonna, G.; Laricchiuta, A.; Pietanza, L.D. 2018: Modeling plasma heating by ns laser pulse. Spectrochimica Acta Part B: Atomic Spectroscopy 141: 85-93
Richards, D.; Bloomfield, M.; Soukane, S.; Cale, T. 2000: Modeling plasma processes in microelectronics. Vacuum 59(1): 168-178
Abd Jelil, R.; Zeng, X.; Koehl, L.; Perwuelz, A. 2013: Modeling plasma surface modification of textile fabrics using artificial neural networks. Engineering Applications of Artificial Intelligence 26(8): 1854-1864
DeFilippo, A.C.; Chen, J. 2016: Modeling plasma-assisted methane–air ignition using pre-calculated electron impact reaction rates. Combustion and Flame 172: 38-48
Subba, F.; Zanino, R. 2004: Modeling plasma-wall interactions in first Wall-Limiter geometry. Computer Physics Communications 164(1-3): 377-382
Crosby, T.; Po, G.; Ghoniem, N.M. 2014: Modeling plastic deformation of post-irradiated copper micro-pillars. Journal of Nuclear Materials 455(1-3): 126-129
Ben-Shmuel, Y.; Altus, E. 2016: Modeling plasticity by non-continuous deformation. Computational Particle Mechanics 4(4): 487-501
Reali, R.; Boioli, F.; Gouriet, K.; Carrez, P.; Devincre, B.; Cordier, P. 2017: Modeling plasticity of Mg O by 2.5D dislocation dynamics simulations. Materials Science and Engineering: A690: 52-61
Cusset, R.; Azzouz, F.; Besson, J.; Dragon-Louiset, M.; Jacques, V.; Proudhon, H. 2020: Modeling plasticity of an aluminum 2024T351 thick rolled plate for cold forming applications. International Journal of Solids and Structures 202: 463-474
Pellis, S. M.; Burghardt, G. M.; Palagi, E.; Mangel, M. 2015: Modeling play: distinguishing between origins and current functions. Adaptive Behavior 23(6): 331-339
Chen, Y.; Pearson, F.J. 2008: Modeling plutonium solubility for Yucca Mountain performance assessment. Radiochimica Acta 96(9-11): 521-526
Ramon, D.; Steinmetz, F.; Jolivet, D.; Compiègne, M.; Frouin, R. 2019: Modeling polarized radiative transfer in the ocean-atmosphere system with the GPU-accelerated SMART-G Monte Carlo code. Journal of Quantitative Spectroscopy and Radiative Transfer 222-223: 89-107
Sun, W.; Lukashin, C. 2013: Modeling polarized solar radiation from the ocean–atmosphere system for CLARREO inter-calibration applications. Atmospheric Chemistry and Physics 13(20): 10303-10324
Lovrić, M.; Lovrić, N.; Schraml, U. 2019: Modeling policy networks: the case of Natura 2000 in Croatian forestry. Forest Policy and Economics 103: 90-102
Blomberg, S. 2000: Modeling political change with a regime-switching model. European Journal of Political Economy 16(4): 739-762
Akarca, A.T. 2015: Modeling political performance of Islamist and Islamist-rooted parties in Turkey. Middle East Development Journal 7(1): 49-69
Pérez, I.; Muniz de Farias, M.; Castro, M.; Roselló, R.; Recarey Morfa, C.; Medina, L.; Oñate, E. 2018: Modeling polycrystalline materials with elongated grains. International Journal for Numerical Methods in Engineering 118(3): 121-131
Tries, V.; Paul, W.; Baschnagel, J.; Binder, K. 1997: Modeling polyethylene with the bond fluctuation model. The Journal of Chemical Physics 106(2): 738-748
Chen, Z.; Guo, Z.; Wen, Q.; Huang, L.; Bakke, R.; Du, M. 2016: Modeling polyhydroxyalkanoate (PHA) production in a newly developed aerobic dynamic discharge (ADD) culture enrichment process. Chemical Engineering Journal 298: 36-43
Molenaar, J.; Koopmans, R.J. 1994: Modeling polymer melt‐flow instabilities. Journal of Rheology 38(1): 99-109
Pereyra, R.G.; Al-Maadeed, M.A.; Carignano, M.A. 2017: Modeling polymeric gels: the role of chain fexibility on the structure of physical gels. Express Polymer Letters 11(3): 199-208
Rezania, V.; Tuszynski, J. 2008: Modeling polymerization of microtubules: a semi-classical nonlinear field theory approach. Physica A: Statistical Mechanics and its Applications 387(23): 5795-5809
Johanson, A.N.; Flögel, S.; Dullo, W.; Linke, P.; Hasselbring, W. 2017: Modeling polyp activity of Paragorgia arborea using supervised learning. Ecological Informatics 39: 109-118
Liu, T.; Cui, J.; Zhuang, H.; Wang, H. 2021: Modeling polypharmacy effects with heterogeneous signed graph convolutional networks. Applied Intelligence 51(11): 8316-8333
Ward, C.; Oleson, J.; Tomblin, J.B.; Walker, E. 2020: Modeling population and subject-specific growth in a latent trait measured by multiple instruments over time using a hierarchical Bayesian framework. Journal of Applied Statistics: 1-17
Li, Y.; Lee, L.M.; Rock, J. 2019: Modeling population dynamics and nonstationary processes of difficult-to-age fishery species with a hierarchical Bayesian two-stage model. Canadian Journal of Fisheries and Aquatic Sciences 76(12): 2199-2214
Izquierdo-Gomez, D.; Bayle-Sempere, J.T.; Arreguín-Sánchez, F.; Sánchez-Jerez, P. 2016: Modeling population dynamics and small-scale fisheries yields of fish farming escapes in Mediterranean coastal areas. Ecological Modelling 331: 56-67
Benenson, I. 1999: Modeling population dynamics in the city: from a regional to a multi-agent approach. Discrete Dynamics in Nature and Society 3(2-3): 149-170
Henschke, N.; Stock, C.; Sarmiento, J. 2018: Modeling population dynamics of scyphozoan jellyfish (Aurelia spp.) in the Gulf of Mexico. Marine Ecology Progress Series 591: 167-183
Stark, D.; Nijman, V.; Lhota, S.; Robins, J.; Goossens, B. 2012: Modeling population viability of local proboscis monkey Nasalis larvatus populations: conservation implications. Endangered Species Research 16(1): 31-43
Lin, B.; Chen, M.; Jin, Y.; Pang, H. 2015: Modeling pore size distribution of southern Sichuan shale gas reservoirs. Journal of Natural Gas Science and Engineering 26: 883-894
Novascone, S.; Medvedev, P.; Peterson, J.W.; Zhang, Y.; Hales, J. 2018: Modeling porosity migration in LWR and fast reactor MOX fuel using the finite element method. Journal of Nuclear Materials 508: 226-236
Drygas, M.; Janik, J.F. 2012: Modeling porosity of high surface area nanopowders of the gallium nitride Ga N semiconductor. Materials Chemistry and Physics 133(2-3): 932-940
Heinze, T.; Galvan, B.; Miller, S.A. 2015: Modeling porous rock fracturing induced by fluid injection. International Journal of Rock Mechanics and Mining Sciences 77: 133-141
Chen, B.; Pompili, D. 2015: Modeling position uncertainty of networked autonomous underwater vehicles. Ad Hoc Networks 34: 184-195
Benferhat, S.; Dubois, D.; Kaci, S.; Prade, H. 2008: Modeling positive and negative information in possibility theory. International Journal of Intelligent Systems 23(10): 1094-1118
Hess, M. 2017: Modeling positive electricity prices with arithmetic jump-diffusions. Energy Economics 67: 496-507
Roy Biswas, T.; Dey, S.; Sen, D. 2021: Modeling positive surge propagation in open channels using the Serre-Green-Naghdi equations. Applied Mathematical Modelling 97: 803-820
Rippe, C.; Case, S.; Lattimer, B. 2017: Modeling post-fire behavior of aluminum structural components using a maximum temperature approach. Fire Safety Journal 91: 561-567
Molnár, V. 2019: Modeling post-socialist urbanization. the case of Budapest. Planning Perspectives 34(5): 931-933
Aldars-García, L.; Ramos, A. J.; Sanchis, V.; Marín, S. 2016: Modeling postharvest mycotoxins in foods: recent research. Current Opinion in Food Science 11: 46-50
Dean, T.; Hromadka Ii, T.; Kastner, T.; Phillips, M. 2010: Modeling potential flow using Laurent series expansions and boundary elements. Numerical Methods for Partial Differential Equations 28(2): 573-586
Zhang, H.; Rutherford, E.S.; Mason, D.M.; Wittmann, M.E.; Lodge, D.M.; Zhu, X.; Johnson, T.B.; Tucker, A. 2019: Modeling potential impacts of three benthic invasive species on the Lake Erie food web. Biological Invasions 21(5): 1697-1719
Sahasrabudhe, S.A.; Al-Kofahi, M.; Cloyd, J.C.; Weinreb, N.; Kartha, R.V. 2021: Modeling potential interactions between oral Gaucher disease treatment and investigational COVID-19 therapies. Molecular Genetics and Metabolism 132(2): S93-S94
Lloyd, A. C.; Atkinson, R.; Lurmann, F. W.; Nitta, B. 1983: Modeling potential ozone impacts from natural hydrocarbons- I. Development and testing of a chemical mechanism for the nox-air photooxidations of isoprene and α-pinene under ambient conditions. Atmospheric Environment (1967) 17(10): 1931-1950
Lurmann, F. W.; Lloyd, A. C.; Bonnie, N. 1983: Modeling potential ozone impacts from natural hydrocarbons- II. Hypothetical biogenic HC emission scenario modeling. Atmospheric Environment (1967) 17(10): 1951-1963
Railsback, S.F.; Harvey, B.C.; Kupferberg, S.J.; Lang, M.M.; McBain, S.; Welsh Jr., H.H. 2016: Modeling potential river management conflicts between frogs and salmonids. Canadian Journal of Fisheries and Aquatic Sciences 73(5): 773-784
Kidyaeva, V.; Chernomorets, S.; Krylenko, I.; Wei, F.; Petrakov, D.; Su, P.; Yang, H.; Xiong, J. 2017: Modeling potential scenarios of the Tangjiashan Lake outburst and risk assessment in the downstream valley. Frontiers of Earth Science 11(3): 579-591
Effat, H.A.; El-Zeiny, A. 2017: Modeling potential zones for solar energy in Fayoum, Egypt, using satellite and spatial data. Modeling Earth Systems and Environment 3(4): 1529-1542
Alonso, P.; Dolz, M.F.; Mayo, R.; Quintana-Ortí, E.S. 2013: Modeling power and energy consumption of dense matrix factorizations on multicore processors. Concurrency and Computation: Practice and Experience 26(17): 2743-2757
Alonso, P.; Dolz, M.F.; Mayo, R.; Quintana-Ortí, E.S. 2012: Modeling power and energy of the task-parallel Cholesky factorization on multicore processors. Computer Science - Research and Development 29(2): 105-112
Guyot, A.; Abou-Samra, S. 1997: Modeling power consumption in arithmetic operators. Microelectronic Engineering 39(1-4): 245-253
Rojek, K.; Quintana-Ortí, E.S.; Wyrzykowski, R. 2017: Modeling power consumption of 3D MPDATA and the CG method on ARM and Intel multicore architectures. The Journal of Supercomputing 73(10): 4373-4389
DelVescovo, D.A.; Splitter, D.A.; Szybist, J.P.; Jatana, G.S. 2020: Modeling pre-spark heat release and low temperature chemistry of iso-octane in a boosted spark-ignition engine. Combustion and Flame 212: 39-52
Srivatsan, S.G. 2004: Modeling prebiotic catalysis with nucleic acid-like polymers and its implications for the proposed RNA world. Pure and Applied Chemistry 76(12): 2085-2099
Robson, J. 2016: Modeling precipitate evolution in zirconium alloys during irradiation. Journal of Nuclear Materials 476: 123-131
Zhang, X.; Xiong, Z.; Yan, X. 2018: Modeling precipitation changes in the Heihe River Basin, Northwest China, from 1980 to 2014 with the Regional Integrated Environment Modeling System (RIEMS) nested with ERA-Interim reanalysis data. Theoretical and Applied Climatology 137(1-2): 493-503
Shim, J.; Povoden-Karadeniz, E.; Kozeschnik, E.; Wirth, B.D. 2015: Modeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation. Journal of Nuclear Materials 462: 250-257
Xue, W.; Yamamoto, K.; Tobino, T.; Ratanatamskul, C. 2016: Modeling prediction of the process performance of seawater-driven forward osmosis for nutrients enrichment: Implication for membrane module design and system operation. Journal of Membrane Science 515: 7-21
Piyathilake, I.D.U.H.; Sumudumali, R.G.I.; Udayakumara, E.P.N.; Ranaweera, L.V.; Jayawardana, J.M.C.K.; Gunatilake, S.K. 2020: Modeling predictive assessment of soil erosion related hazards at the Uva province in Sri Lanka. Modeling Earth Systems and Environment 7(3): 1947-1962
Khan, M.A.; Çamur, H.; Kassem, Y. 2018: Modeling predictive assessment of wind energy potential as a power generation sources at some selected locations in Pakistan. Modeling Earth Systems and Environment 5(2): 555-569
Amarasinghe, A.G.; Perera, E.N.C. 2020: Modeling predictive suitability to determine potential areas for establishing wind power plants in Sri Lanka. Modeling Earth Systems and Environment 7(1): 443-454
Wang, Y. 2016: Modeling predictors of restaurant employees' green behavior: Comparison of six attitude-behavior models. International Journal of Hospitality Management 58: 66-81
Günay, M.E.; Yildirim, R. 2013: Modeling preferential CO oxidation over promoted Au/Al2O3 catalysts using decision trees and modular neural networks. Chemical Engineering Research and Design 91(5): 874-882
Castán, T.; Vives, E.; Lindgård, P. 1999: Modeling premartensitic effects in Ni2Mn Ga: a mean-field and Monte Carlo simulation study. Physical Review B 60(10): 7071-7084
Saridakis, C.; Baltas, G. 2014: Modeling price-related consequences of the brand origin cue: An empirical examination of the automobile market. Marketing Letters 27(1): 77-87
Zahoor, M. 2018: Modeling primary creep for Zircaloy claddings during load reversals and drops in BISON. Journal of Nuclear Materials 511: 212-219
Antonov, V.A.; Grishin, A.M.; Kovalev, Y.M.; Naimushina, L.Y. 1993: Modeling primer cord detonation in a forest canopy without a fire. Combustion, Explosion, and Shock Waves 29(4): 527-534
Hotchkiss, E.R.; Hall Jr., R.O.; Baker, M.A.; Rosi-Marshall, E.J.; Tank, J.L. 2014: Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. Journal of Geophysical Research: Biogeosciences 119(5): 982-995
Rump, A.; Eder, S.; Hermann, C.; Lamkowski, A.; Kinoshita, M.; Yamamoto, T.; Take, J.; Abend, M.; Shinomiya, N.; Port, M. 2021: Modeling principles of protective thyroid blocking. International Journal of Radiation Biology: 1-12
Shafik, N.; Shafik, N. 1992: Modeling private investment in Egypt. Journal of Development Economics 39(2): 263-277
Li, S.; Ouyang, M.; Zhou, D. 2005: Modeling privatization as a firm strategy in transition economies. Journal of Business Research 58(1): 37-44
Jerak, A.; Wagner, S. 2006: Modeling probabilities of patent oppositions in a Bayesian semiparametric regression framework. Empirical Economics 31(2): 513-533
Dumitrescu, B.; Şicleru, B.C.; Avram, F. 2016: Modeling probability densities with sums of exponentials via polynomial approximation. Journal of Computational and Applied Mathematics 292: 513-525
Mäkinen, T.; Holmström, L. 2016: Modeling probability density through ultraspherical polynomial transformations. Communications in Statistics - Simulation and Computation 46(8): 5879-5900
Otto, P.B. 1991: Modeling problem solving inquiry processes. Journal of Science Teacher Education 2(2): 37-39
Ojika, T.; Welsh, W. 1980: Modeling problems in ordinary differential equations using the initial value adjusting method. Journal of Mathematical Analysis and Applications 75(2): 359-372
Knawa, M.; Bryja, D. 2009: Modeling problems of steeply inclined cableway subjected to moving load. PAMM 9(1): 263-264
Gregory, H.H. 1974: Modeling procedures in the treatment of elementary school age children who stutter. Journal of Fluency Disorders 1(1): 58-63
Cooper, J.; Godwin, C.; Hall, E.S. 2007: Modeling process and material alternatives in life cycle assessments. The International Journal of Life Cycle Assessment 13(2): 115-123
Raillard, N.; Prevosto, M.; Ailliot, P. 2015: Modeling process asymmetries with Laplace moving average. Computational Statistics-Data Analysis 81: 24-37
Strembeck, M.; Mendling, J. 2011: Modeling process-related RBAC models with extended UML activity models. Information and Software Technology 53(5): 456-483
Osterweil, J. P.; Nutt, G. J. 1979: Modeling process-resource activity †. International Journal of Computer Mathematics 7(1): 21-35
Crowther, C.S. 1996: Modeling processing dependences in speech perception. Journal of the Acoustical Society of America 99(4): 2590-2603
Stahl, M.J.; Zimmerer, T.W. 1983: Modeling product development decision policies of managers and management students: Differences between subjective and relative weights. IEEE Transactions on Engineering Management EM-30(1): 18-24
Zhang, L.(.; Jiao, J.(. 2008: Modeling production configuration using nested colored object-oriented Petri-nets with changeable structures. Journal of Intelligent Manufacturing 20(4): 359-378
Smirnova, G.S.; Sabitov, R.A.; Korobkova, E.A.; Sabitov, S.R. 2017: Modeling production facility as a dynamic integrated interacting objects system. Procedia Computer Science 112: 965-970
Bižić, M.; Bulatović, R.; Petrović, D.; Gašić, M.; Savković, M. 2012: Modeling profile and kinematic analysis of two circular-arc cams. Engineering with Computers 29(4): 535-546
Ackermann, H.; Ewe, H.; Küfer, K.; Schröder, M. 2013: Modeling profit sharing in combinatorial exchanges by network flows. Annals of Operations Research 222(1): 5-28
Weng, J.; Tan, K.; Lee, C. 2017: Modeling progressive collapse of 2D reinforced concrete frames subject to column removal scenario. Engineering Structures 141: 126-143
Zhang, J.; Lu, Y.; He, L.; Yang, L.; Ni, Y. 2017: Modeling progressive interfacial debonding of a mud-crack film on elastic substrates. Engineering Fracture Mechanics 177: 123-132
Ke, H.; Ma, J. 2014: Modeling project time–cost trade-off in fuzzy random environment. Applied Soft Computing 19: 80-85
Wang, M.; Madden, M.; Hendy, I.; Estradivari; Ahmadia, G.N. 2016: Modeling projected changes of mangrove biomass in different climatic scenarios in the Sunda Banda Seascapes. International Journal of Digital Earth 10(4): 457-468
Dill, F.; Neureuther, A.; Tuttle, J.; Walker, E. 1975: Modeling projection printing of positive photoresists. IEEE Transactions on Electron Devices 22(7): 456-464
Stuerga, D.; Calmels, A.; Pribetich, P. 2001: Modeling propagation for high-power cylindrical microwave applicators. Microwave and Optical Technology Letters 30(3): 192-195
Calmels, A.; Stuerga, D.; Lepage, P.; Pribetich, P. 1999: Modeling propagation in high-power microwave devices. Microwave and Optical Technology Letters 21(6): 477-482
Watkins, L.; Yu Rong Zhou, 1994: Modeling propagation in optical fibers using wavelets. Journal of Lightwave Technology 12(9): 1536-1542
Panchadhara, R.; Gordon, P.A.; Parks, M.L. 2017: Modeling propellant-based stimulation of a borehole with peridynamics. International Journal of Rock Mechanics and Mining Sciences 93: 330-343
Atanasov, M.; Daul, C.A. 2005: Modeling properties of molecules with open d-shells using density functional theory. Comptes Rendus Chimie 8(9-10): 1421-1433
Nemukhin, A.V.; Grigorenko, B.L. 1997: Modeling properties of the HF dimer in argon clusters. International Journal of Quantum Chemistry 62(1): 55-65
Mairhofer, J.; Gross, J. 2018: Modeling properties of the one-dimensional vapor-liquid interface: Application of classical density functional and density gradient theory. Fluid Phase Equilibria 458: 243-252
Vardhan Jain, H.; Friedman, A. 2013: Modeling prostate cancer response to continuous versus intermittent androgen ablation Therapy. Discrete-Continuous Dynamical Systems - B 18(4): 945-967
Peskin, C. S.; McQueen, D. M. 1980: Modeling prosthetic heart valves for numerical analysis of blood flow in the heart. Journal of Computational Physics 37(1): 113-132
Basu, A.; Chowdhury, D. 2007: Modeling protein synthesis from a physicist's perspective: a toy model. American Journal of Physics 75(10): 931-937
Chopra, G.; Kaur, D.; Chopra, N. 2018: Modeling protein-protein interactions through alanine-amide hydrogen bonds. Structural Chemistry 29(5): 1397-1415
Darcy, I.K. 2008: Modeling protein–DNA complexes with tangles. Computers-Mathematics with Applications 55(5): 924-937
Tran, H.; El Bitar, Z.; Champion, C.; Karamitros, M.; Bernal, M.; Francis, Z.; Ivantchenko, V.; Lee, S.; Shin, J.; Incerti, S. 2015: Modeling proton and alpha elastic scattering in liquid water in Geant4-DNA. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 343: 132-137
Fermann, J.T.; Blanco, C.; Auerbach, S. 2000: Modeling proton mobility in acidic zeolite clusters. I. Convergence of transition state parameters from quantum chemistry. The Journal of Chemical Physics 112(15): 6779-6786
Fermann, J.T.; Auerbach, S. 2000: Modeling proton mobility in acidic zeolite clusters: II. Room temperature tunneling effects from semiclassical rate theory. The Journal of Chemical Physics 112(15): 6787-6794
Duan, X.; Scheiner, S.; Wang, R. 1993: Modeling proton transfer potentials in angularly deformed hydrogen bonds. International Journal of Quantum Chemistry 48(S 20): 77-87
Mendez, F. 2017: Modeling proximity and directional decisional logic: what can we learn from applying statistical learning techniques to VAA-generated data?. Journal of Elections, Public Opinion and Parties 27(1): 31-55
Bakst, I.N.; Sypek, J.T.; Neilson, J.R.; Lee, S.; Weinberger, C.R. 2018: Modeling pseudo-elastic behavior in small-scale Th Cr2Si2-type crystals. Computational Materials Science 150: 86-95
Srinivasan, P.; Nicola, L.; Simone, A. 2017: Modeling pseudo-elasticity in Ni Ti: Why the MEAM potential outperforms the EAM-FS potential. Computational Materials Science 134: 145-152
Chen, M.; Liao, C.; Hsieh, R. 2019: Modeling public mood and emotion: Stock market trend prediction with anticipatory computing approach. Computers in Human Behavior 101: 402-408
Baucum, M.; Rosoff, H.; John, R.; Burns, W.; Slovic, P. 2018: Modeling public responses to soft-target transportation terror. Environment Systems and Decisions 38(2): 239-249
Ožbolt, J.; Oršanić, F.; Balabanić, G. 2014: Modeling pull-out resistance of corroded reinforcement in concrete: Coupled three-dimensional finite element model. Cement and Concrete Composites 46: 41-55
Wang, Y.; Shen, N.; Befekadu, G.K.; Pasiliao, C.L. 2017: Modeling pulsed laser ablation of aluminum with finite element analysis considering material moving front. International Journal of Heat and Mass Transfer 113: 1246-1253
Teixidor, D.; Grzenda, M.; Bustillo, A.; Ciurana, J. 2013: Modeling pulsed laser micromachining of micro geometries using machine-learning techniques. Journal of Intelligent Manufacturing 26(4): 801-814
Fernández-Antolín, A.; de Lapparent, M.; Bierlaire, M. 2017: Modeling purchases of new cars: an analysis of the 2014 French market. Theory and Decision 84(2): 277-303
Demirbag, M.; Sahadev, S.; Kaynak, E.; Akgul, A. 2012: Modeling quality commitment in service organizations: an empirical study. European Journal of Marketing 46(6): 790-810
Achcar, J.A.; Piratelli, C.L.; de Souza, R.M. 2012: Modeling quality control data using Weibull distributions in the presence of a change point. International Journal of Advanced Manufacturing Technology 66(9-12): 1611-1621
Vassilopoulos, A.; Klonaris, S.; Drichoutis, A.C.; Lazaridis, P. 2012: Modeling quality demand with data from Household Budget Surveys: An application to meat and fish products in Greece. Economic Modelling 29(6): 2744-2750
Kalivas, N.; Costaridou, L.; Kandarakis, I.; Cavouras, D.; Nomicos, C.; Panayiotakis, G. 2002: Modeling quantum and structure noise of phosphors used in medical X-ray imaging detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 490(3): 614-629
Mondal, C.K.; Chaudhury, P.; Bhattacharyya, S.P. 1999: Modeling quantum dynamics of photodetachment from closed-shell anions: Static versus fluctuating well-depth models. International Journal of Quantum Chemistry 73(6): 469-478
Mesa Pascasio, J.; Fussy, S.; Schwabl, H.; Grössing, G. 2013: Modeling quantum mechanical double slit interference via anomalous diffusion: Independently variable slit widths. Physica A: Statistical Mechanics and its Applications 392(12): 2718-2727
Kalivas, N.; Kandarakis, I.; Cavouras, D.; Costaridou, L.; Nomicos, C.; Panayiotakis, G. 1999: Modeling quantum noise of phosphors used in medical X-ray imaging detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 430(2-3): 559-569
Singh, K.N.; Pant, N. 2014: Modeling quasar central engine as a relativistic radiating star. Astrophysics and Space Science 355(1): 171-177
Raina, A.; Linder, C. 2012: Modeling quasi-static crack growth with the embedded finite element method on multiple levels. PAMM 12(1): 135-136
Hyung Keun Lee; Jang Gyu Lee; Yong Kyu Roh; Chan Gook Park, 1998: Modeling quaternion errors in SDINS: computer frame approach. IEEE Transactions on Aerospace and Electronic Systems 34(1): 289-300
Wu, M. 2015: Modeling query-document dependencies with topic language models for information retrieval. Information Sciences 312: 1-12
Sargent, R. 1997: Modeling queueing systems using hierarchical control flow graph models. Mathematics and Computers in Simulation 44(3): 233-249
Shi, F.; Kirby, J.T.; Ma, G. 2010: Modeling quiescent phase transport of air bubbles induced by breaking waves. Ocean Modelling 35(1-2): 105-117
Mohanty, N. 1978: Modeling radar reflections from randomly moving scatterers. Proceedings of the IEEE 66(1): 86-88
Nikkhoo, M.; Gadala-Maria, F. 2014: Modeling radial filtration in squeeze flow of highly concentrated suspensions. Rheologica Acta 53(8): 607-619
Wang, C.; Ma, Q.; Tao, X.; Zhang, Y.; Teng, S.; Albert, J.M.; Chan, A.A.; Li, W.; Ni, B.; Lu, Q.; Wang, S. 2017: Modeling radiation belt dynamics using a 3‐D layer method code. Journal of Geophysical Research: Space Physics 122(8): 8642-8658
Xu, C.; Liu, X.; Gao, F.; Li, Y.; Wang, Y. 2014: Modeling radiation damage near grain boundary in helium-doped α-iron. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 332: 426-431
Marshall, J.A.; Luthcke, S.B. 1994: Modeling radiation forces acting on Topex/Poseidon for precision orbit determination. Journal of Spacecraft and Rockets 31(1): 99-105
Senninger, O.; Soisson, F.; Martínez, E.; Nastar, M.; Fu, C.; Bréchet, Y. 2016: Modeling radiation induced segregation in iron–chromium alloys. Acta Materialia 103: 1-11
Ossi, P.M.; Pastorelli, R. 1999: Modeling radiation induced structural evolution in nonmetallic compounds. Journal of Applied Physics 85(3): 1387-1394
Phaneuf, C.R.; Pak, N.; Forest, C.R. 2011: Modeling radiative heating of liquids in microchip reaction chambers. Sensors and Actuators A: Physical 167(2): 531-536
Wang, B.; Zhao, C. 2015: Modeling radiative properties of air plasma sprayed thermal barrier coatings in the dependent scattering regime. International Journal of Heat and Mass Transfer 89: 920-928
Wang, A.; Cai, J. 2010: Modeling radiative properties of nanoscale patterned wafers. Science China Technological Sciences 53(2): 352-359
Zubatiuk, T.; Sajjadi, B.; Hill, G.; Leszczynska, D.; Chen, W.; Leszczynski, J. 2017: Modeling radical edge-site reactions of biochar in CO2/water solution under ultrasonic treatment. Chemical Physics Letters 689: 48-55
Wang, Y.; Bu, F. 2021: Modeling radicalization of terrorism under the influence of multiple ideologies. AIMS Mathematics 7(3): 4833-4850
Bucciantini, N.; Olmi, B. 2017: Modeling radio circular polarization in the Crab nebula. Monthly Notices of the Royal Astronomical Society 475(1): 822-826
Menietti, J.; Gurnett, D.; Hospodarsky, G.; Higgins, C.; Kurth, W.; Zarka, P. 2003: Modeling radio emission attenuation lanes observed by the Galileo and Cassini spacecraft. Planetary and Space Science 51(9-10): 533-540
Wilson, J.D.; Arndt, S. 2017: Modeling radiocarbon constraints on the dilution of dissolved organic carbon in the deep ocean. Global Biogeochemical Cycles 31(5): 775-786
Sierra, C.A.; Müller, M.; Trumbore, S.E. 2014: Modeling radiocarbon dynamics in soils: Soil R version 1.1. Geoscientific Model Development 7(5): 1919-1931
Shireman, J.; Ratliff, K.; Mikelonis, A.M. 2021: Modeling radionuclide transport in urban overland flow: a case study. Urban Water Journal: 1-11
Muhammad, A.; Külahcı, F.; Akram, P. 2020: Modeling radon time series on the North Anatolian Fault Zone, Turkiye: Fourier transforms and Monte Carlo simulations. Natural Hazards 104(1): 979-996
Hamper, M.B.; Zaazaa, K.E.; Shabana, A.A. 2012: Modeling railroad track structures using the finite segment method. Acta Mechanica 223(8): 1707-1721
Nillama, G.V.P. 2020: Modeling rainfall influence to soil sediment yield in corn monocropping systems in Claveria, Southern Philippines through Water Erosion Prediction Project (WEPP). Modeling Earth Systems and Environment 7(2): 853-869
Zhang, Y.; Li, X.; Li, W.; Wu, X.; Shi, F.; Fang, W.; Pei, T. 2017: Modeling rainfall interception loss by two xerophytic shrubs in the Loess Plateau. Hydrological Processes 31(10): 1926-1937
Vidyarthi, V.K.; Jain, A.; Chourasiya, S. 2020: Modeling rainfall-runoff process using artificial neural network with emphasis on parameter sensitivity. Modeling Earth Systems and Environment 6(4): 2177-2188
van der Wel, A.; Klumperink, E.; Vandamme, L.; Nauta, B. 2003: Modeling random telegraph noise under switched bias conditions using cyclostationary rts noise. IEEE Transactions on Electron Devices 50(5): 1378-1384
Avellán, A.; Schroeder, D.; Krautschneider, W. 2003: Modeling random telegraph signals in the gate current of metal–oxide–semiconductor field effect transistors after oxide breakdown. Journal of Applied Physics 94(1): 703-708
Cataldo, E.; Sampaio, R.; Lucero, J.; Soize, C. 2008: Modeling random uncertainties in voice production using a parametric approach. Mechanics Research Communications 35(7): 454-459
Persson, J.; Isaksson, P. 2015: Modeling rapidly growing cracks in planar materials with a view to micro structural effects. International Journal of Fracture 192(2): 191-201
Freire, R.O.; Rocha, G.B.; Simas, A.M. 2005: Modeling rare earth complexes: Sparkle/AM1 parameters for thulium (III). Chemical Physics Letters 411(1-3): 61-65
Freire, R.O.; Rocha, G.B.; Simas, A.M. 2006: Modeling rare earth complexes: Sparkle/PM3 parameters for thulium(III). Chemical Physics Letters 425(1-3): 138-141
Zhao, X.; Xie, H.; Pan, H. 2018: Modeling rate-dependent hysteresis in piezoelectric actuators using T-S fuzzy system based on expanded input space method. Sensors and Actuators A: Physical 283: 123-127
Moody, C.S.; Worrall, F. 2017: Modeling rates of DOC degradation using DOM composition and hydroclimatic variables. Journal of Geophysical Research: Biogeosciences 122(5): 1175-1191
Manisera, M.; Zuccolotto, P. 2014: Modeling rating data with Nonlinear CUB models. Computational Statistics-Data Analysis 78: 100-118
Weißbach, R.; Strohecker, F. 2016: Modeling rating transitions with instantaneous default. Economics Letters 145: 38-40
Anthony di Benedetto, C. 1987: Modeling rationality in marketing decision-making with game theory. Journal of the Academy of Marketing Science 15(4): 22-32
Kumar, K.A.; Lakshmisha, K. 2002: Modeling re-ignition and chuffing in solid rocket motors. Proceedings of the Combustion Institute 29(2): 2905-2912
April, G.C.; Pike, R.W.; Del Valle, E.G. 1971: Modeling reacting gas flow in the char layer of an ablator. AIAA Journal 9(6): 1113-1119
Williams, K.S.; Rodriguez-Santiago, V.; Andzelm, J.W. 2016: Modeling reaction pathways for hydrogen evolution and water dissociation on magnesium. Electrochimica Acta 210: 261-270
Přibyl, M.; Knápková, V.; Šnita, D.; Marek, M. 2006: Modeling reaction-transport processes in a microcapillary biosensor for detection of human Ig G. Microelectronic Engineering 83(4-9): 1660-1663
Karakaya, C.; Weddle, P.J.; Blasi, J.M.; Diercks, D.R.; Kee, R.J. 2016: Modeling reaction–diffusion processes within catalyst washcoats: I. Microscale processes based on three-dimensional reconstructions. Chemical Engineering Science 145: 299-307
Zhu, S.; Horne, J.R.; Montoya-Aguilera, J.; Hinks, M.L.; Nizkorodov, S.A.; Dabdub, D. 2018: Modeling reactive ammonia uptake by secondary organic aerosol in CMAQ: application to the continental US. Atmospheric Chemistry and Physics 18(5): 3641-3657
Passerone, C.; Sansoe, C.; Lavagno, L.; McGeer, R.; Martin, J.; Passerone, R.; Sangiovanni-Vincentelli, A. 1998: Modeling reactive systems in Java. ACM Transactions on Design Automation of Electronic Systems 3(4): 515-523
Dahmani, M.; Marleau, G.; Le Tellier, R. 2008: Modeling reactivity devices for advanced CANDU reactors using the code DRAGON. Annals of Nuclear Energy 35(5): 804-812
Ortiz-Conde, A.; Estrada, M.; Cerdeira, A.; Garcı́a Sánchez, F.; De Mercato, G. 2001: Modeling real junctions by a series combination of two ideal diodes with parallel resistance and its parameter extraction. Solid-State Electronics 45(2): 223-228
Ciarreta, A.; Zarraga, A. 2016: Modeling realized volatility on the Spanish intra-day electricity market. Energy Economics 58: 152-163
Gil, R.; Sánchez, J. A.; Plaza, S.; Ortega, N.; Izquierdo, B.; Pombo, I. 2013: Modeling recast layer and surface finish in the manufacturing of high–aspect ratio micro-tools using the inverse slab electrical discharge milling process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 228(4): 553-562
Figge, M.T.; Meyer-Hermann, M. 2008: Modeling receptor-ligand binding kinetics in immunological synapse formation. The European Physical Journal D 51(1): 153-160
Girju, R.; Paul, M.J. 2011: Modeling reciprocity in social interactions with probabilistic latent space models. Natural Language Engineering 17(1): 1-36
Schmidt, L. C.; Jackman, J. 2000: Modeling recirculating conveyors with blocking. European Journal of Operational Research 124(2): 422-436
Folchert, N.; Peibst, R.; Brendel, R. 2020: Modeling recombination and contact resistance of poly‐Si junctions. Progress in Photovoltaics: Research and Applications 28(12): 1289-1307
Santos, O.C.; Boticario, J.G. 2010: Modeling recommendations for the educational domain. Procedia Computer Science 1(2): 2793-2800
Wergen, G. 2014: Modeling record-breaking stock prices. Physica A: Statistical Mechanics and its Applications 396: 114-133
Smith, V.; Kaoru, Y. 1986: Modeling recreation demand within a random utility framework. Economics Letters 22(4): 395-399
Shcherbina, O.; Shembeleva, E. 2011: Modeling recreational systems using optimization techniques and information technologies. Annals of Operations Research 221(1): 309-329
Ahmadi, Z.; Kramer, S. 2017: Modeling recurring concepts in data streams: a graph-based framework. Knowledge and Information Systems 55(1): 15-44
Vandermeer, R.A.; Rath, B.B. 1989: Modeling recystallization kinetics in a deformed iron single crystal. Metallurgical Transactions A 20(3): 391-401
Kupka, T.; Buczek, A.; Broda, M.A.; Szostak, R.; Lin, H.; Fan, L.; Wrzalik, R.; Stobiński, L. 2016: Modeling red coral (Corallium rubrum) and African snail (Helixia aspersa) shell pigments: Raman spectroscopyversus DFT studies. Journal of Raman Spectroscopy 47(8): 908-916
Narahari, Y.; Khan, L. 1996: Modeling reentrant manufacturing systems with inspection stations. Journal of Manufacturing Systems 15(6): 367-378
Melati, D.; Morichetti, F.; Melloni, A. 2012: Modeling reflections induced by waveguide transitions. Optical and Quantum Electronics 45(4): 309-316
Hurtado, A.; Gonzalez-Marcos, A.; Martin-Pereda, J. 2005: Modeling reflective bistability in vertical-cavity semiconductor optical amplifiers. IEEE Journal of Quantum Electronics 41(3): 376-383
Nordstrom, S.; Shetty, S.; Neema, S.; Bapty, T. 2006: Modeling reflex-healing autonomy for large-scale embedded systems. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews) 36(3): 292-303
Xue, X.; Croft, W.B. 2013: Modeling reformulation using query distributions. ACM Transactions on Information Systems 31(2): 1-34
García-Quismondo, M.; Levin, M.; Lobo, D. 2017: Modeling regenerative processes with membrane computing. Information Sciences 381: 229-249
Kanas, A. 2008: Modeling regime transition in stock index futures markets and forecasting implications. Journal of Forecasting 27(8): 649-669
Fast, J.D.; Allan, J.; Bahreini, R.; Craven, J.; Emmons, L.; Ferrare, R.; Hayes, P.L.; Hodzic, A.; Holloway, J.; Hostetler, C.; Jimenez, J.L.; Jonsson, H.; Liu, S.; Liu, Y.; Metcalf, A.; Middlebrook, A.; Nowak, J.; Pekour, M.; Perring, A.; Russell, L.; Sedlacek, A.; Seinfeld, J.; Setyan, A.; Shilling, J.; Shrivastava, M.; Springston, S.; Song, C.; Subramanian, R.; Taylor, J.W.; Vinoj, V.; Yang, Q.; Zaveri, R.A.; Zhang, Q. 2014: Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to emissions and long-range transport during the 2010 Cal Nex and CARES campaigns. Atmospheric Chemistry and Physics 14(18): 10013-10060
Yahya, K.; Glotfelty, T.; Wang, K.; Zhang, Y.; Nenes, A. 2017: Modeling regional air quality and climate: improving organic aerosol and aerosol activation processes in WRF/Chem version 3.7.1. Geoscientific Model Development 10(6): 2333-2363
Davidson, J.H.; Ryerson, M.S. 2021: Modeling regional disparity and the reverse commute. Transportation Research Part A: Policy and Practice 150: 124-139
Cope Iii, R.F.; Dismukes, D.E.; Cope, R.F. 2001: Modeling regional electric power markets and market power. Managerial and Decision Economics 22(8): 411-429
Pagsuyoin, S. A.; Santos, J. R. 2021: Modeling regional impacts and resilience to water service disruptions in urban economies. Environment and Planning B: Urban Analytics and City Science 48(5): 1058-1074
Fauser, S.G. 2010: Modeling regional labor markets in Germany: insights not only for German policy makers. Empirica 38(2): 169-201
Pomee, M.S.; Ashfaq, M.; Ahmad, B.; Hertig, E. 2020: Modeling regional precipitation over the Indus River basin of Pakistan using statistical downscaling. Theoretical and Applied Climatology 142(1-2): 29-57
Bui, M.; Krishen, A.S.; Bates, K. 2011: Modeling regret effects on consumer post‐purchase decisions. European Journal of Marketing 45(7-8): 1068-1090
Chen, Z.; Xu, J.; Soh, Y.C. 2015: Modeling regular occupancy in commercial buildings using stochastic models. Energy and Buildings 103: 216-223
Keijsers, J.; Leguy, C.; Narracott, A.; Rittweger, J.; van de Vosse, F.; Huberts, W. 2018: Modeling regulation of vascular tone following muscle contraction: Model development, validation and global sensitivity analysis. Journal of Computational Science 24: 143-159
Cooper, G.A.; Levin, S.R.; Wild, G.; West, S.A. 2018: Modeling relatedness and demography in social evolution. Evolution Letters 2(4): 260-271
Bråten, I.; Ferguson, L.E.; Anmarkrud, .; Strømsø, H.I.; Brandmo, C. 2014: Modeling relations between students' justification for knowing beliefs in science, motivation for understanding what they read in science, and science achievement. International Journal of Educational Research 66: 1-12
Rad, T.G.; Alimohammadi, A. 2021: Modeling relationships between the network distance and travel time dynamics for assessing equity of accessibility to urban parks. Geo-spatial Information Science 24(3): 509-526
Soutou, C. 2001: Modeling relationships in object-relational databases. Data-Knowledge Engineering 36(1): 79-107
Rempel, A.W.; Marshall, J.A.; Roering, J.J. 2016: Modeling relative frost weathering rates at geomorphic scales. Earth and Planetary Science Letters 453: 87-95
Mutascio, H.E.; Pittman, S.E.; Zollner, P.A.; D'Acunto, L.E. 2017: Modeling relative habitat suitability of southern Florida for invasive Burmese pythons (Python molurus bivittatus). Landscape Ecology 33(2): 257-274
Sarno, S.; Fasano, G.; D'Errico, M. 2019: Modeling relative motion of LEO satellites at different altitudes. Acta Astronautica 156: 197-207
Pang, Y.; Kahana, D.; Kahana, S.; Schlagel, T. 1995: Modeling relativistic heavy ion collisions: from AGS to SPS. Nuclear Physics A 590(1-2): 565-570
Kliem, H.; Leschhorn, A. 2016: Modeling relaxor characteristics in systems of interacting dipoles. Physica B: Condensed Matter 503: 167-173
Mance, C.M.; Barker, K.; Chimka, J.R. 2017: Modeling reliability with a two-sided power distribution. Quality Engineering 29(4): 643-655
Arano, K.G.; Blair, B.F. 2008: Modeling religious behavior and economic outcome: Is the relationship bicausal?. The Journal of Socio-Economics 37(5): 2043-2053
Çoban, V.; Onar, S.. 2017: Modeling renewable energy usage with hesitant Fuzzy cognitive map. CompleX-Intelligent Systems 3(3): 155-166
Raina, A.; Linder, C. 2013: Modeling reorientation phenomena in nonwoven materials with random fiber network microstructure. PAMM 13(1): 249-250
Todd, P.; Hills, T.; Hendrickson, A. 2013: Modeling reproductive decisions with simple heuristics. Demographic Research 29: 641-662
Gourault, M.; Petton, S.; Thomas, Y.; Pecquerie, L.; Marques, G.M.; Cassou, C.; Fleury, E.; Paulet, Y.; Pouvreau, S. 2019: Modeling reproductive traits of an invasive bivalve species under contrasting climate scenarios from 1960 to 2100. Journal of Sea Research 143: 128-139
Blatt, S.; Reiter, P. 2014: Modeling repulsive forces on fibres via knot energies. Computational and Mathematical Biophysics 2(1): 56-72
Ning, P.; Wang, X.; Jajodia, S. 2000: Modeling requests among cooperating intrusion detection systems. Computer Communications 23(17): 1702-1715
Wang, K.; Li, C. 2002: Modeling research in low-medium temperature geothermal field, Tianjin. Science in China Series B: Chemistry 45(S 1): 61-69
Wang, J.; Chen, H.; Zhu, Z. 2021: Modeling research of satellite-to-ground quantum key distribution constellations. Acta Astronautica 180: 470-481
Wu, Y.; Xu, X.; Li, C. 2008: Modeling research on manufacturing execution system based on large-scale system cybernetics. Journal of Shanghai Jiaotong University (Science) 13(6): 744-747
Li, Z.; Wen, Z.; Su, F.; Zhang, R.; Zhou, Z. 2017: Modeling research on pearlite-to-austenite transformation in hypereutectoid steel containing Cr. Journal of Alloys and Compounds 727: 1050-1056
Lu, N.; Zhang, B.; Wang, T.; Fu, Q. 2021: Modeling research on the extreme hydraulic extension length of horizontal well: impact of formation properties, drilling bit and cutting parameters. Journal of Petroleum Exploration and Production Technology 11(3): 1211-1222
Su, X.; Zeng, G.; Huang, G.; Li, J.; Liang, J.; Wang, L.; Du, C. 2007: Modeling research on the sorption kinetics of pentachlorophenol (PCP) to sediments based on neural networks and neuro-fuzzy systems. Engineering Applications of Artificial Intelligence 20(2): 239-247
Sievers, D.A.; Stickel, J.J. 2018: Modeling residence-time distribution in horizontal screw hydrolysis reactors. Chemical Engineering Science 175: 396-404
Milligan, J.; Hendrickx, P.; Tünçay, M.; Olevsky, E.; Brochu, M. 2014: Modeling residual porosity in thick components consolidated by spark plasma sintering. Scripta Materialia 76: 53-56
Zahn, A.; Balzani, D. 2016: Modeling residual stresses in arterial walls based on anisotropic growth. PAMM 16(1): 115-116
Weber, M.C.; Pavlacic, J.M.; Gawlik, E.A.; Schulenberg, S.E.; Buchanan, E.M. 2020: Modeling resilience, meaning in life, posttraumatic growth, and disaster preparedness with two samples of tornado survivors. Traumatology 26(3): 266-277
Ambrogio, S.; Magyari-Köpe, B.; Onofrio, N.; Mahbubul Islam, M.; Duncan, D.; Nishi, Y.; Strachan, A. 2017: Modeling resistive switching materials and devices across scales. Journal of Electroceramics 39(1-4): 39-60
Hassan, E.M.; Mahmoud, H. 2017: Modeling resolution effects on the seismic response of a hospital steel building. Journal of Constructional Steel Research 139: 254-271
Efthymiopoulos, C.; Páez, R.I. 2014: Modeling resonant trojan motions in planetary systems. Proceedings of the International Astronomical Union 9(S 310): 70-73
Kosolapova, N.A.; Matveeva, L.G.; Nikitaeva, A.Y.; Molapisi, L. 2017: Modeling resource basis for social and economic development strategies: Water resource case. Journal of Hydrology 553: 438-446
Kelényi, I.; Nurminen, J.K.; Ludányi, .; Lukovszki, T. 2011: Modeling resource constrained Bit Torrent proxies for energy efficient mobile content sharing. Peer-to-Peer Networking and Applications 5(2): 163-177
Emerson, J. 1984: Modeling resource depletion impacts- the Ogallalla aquifer study. Socio-Economic Planning Sciences 18(5): 343-351
Billand, P.; Bravard, C.; Sarangi, S. 2012: Modeling resource flow asymmetries using condensation networks. Social Choice and Welfare 41(3): 537-549
Azevedo, C.L.; Iacob, M.; Almeida, J.P.A.; van Sinderen, M.; Pires, L.F.; Guizzardi, G. 2015: Modeling resources and capabilities in enterprise architecture: a well-founded ontology-based proposal for Archi Mate. Information Systems 54: 235-262
Segars, W.; Lalush, D.; Tsui, B. 2001: Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms. IEEE Transactions on Nuclear Science 48(1): 89-97
Furukawa, Y.; Hojo, D.; Sakamoto, J.; Takaoka, K. 2021: Modeling response granularity with mixture models: a case of severity ratings in child maltreatment. Behaviormetrika 48(2): 393-405
Ghose, D.; Das, U.; Roy, P. 2018: Modeling response of runoff and evapotranspiration for predicting water table depth in arid region using dynamic recurrent neural network. Groundwater for Sustainable Development 6: 263-269
Miller, R.L. 2020: Modeling response of water temperature to channelization in a coastal river network. River Research and Applications 37(3): 433-447
Dragomir, C.M.; Constantin, D.; Voiculescu, M.; Georgescu, L.P.; Merlaud, A.; Roozendael, M.V. 2015: Modeling results of atmospheric dispersion of NO 2 in an urban area using METI–LIS and comparison with coincident mobile DOAS measurements. Atmospheric Pollution Research 6(3): 503-510
Alho, A.R.; de Abreu e Silva, J. 2016: Modeling retail establishments' freight trip generation: a comparison of methodologies to predict total weekly deliveries. Transportation 44(5): 1195-1212
Gao, X.; Sun, L. 2021: Modeling retirees' investment behaviors in the presence of health expenditure risk and financial crisis risk. Economic Modelling 94: 442-454
Yuan, X.-.; Cheung, K.L. 1998: Modeling returns of merchandise in an inventory system. OR Spektrum 20(3): 147-154
Jiang, W.; Ruan, Q.; Li, J.; Li, Y. 2018: Modeling returns volatility: Realized GARCH incorporating realized risk measure. Physica A: Statistical Mechanics and its Applications 500: 249-258
O'Leary, D.E. 2016: Modeling retweeting behavior as a game: comparison to empirical results. International Journal of Human-Computer Studies 88: 1-12
Liu, Q.; Anderson, E.J.; Zhang, Y.; Weinke, A.D.; Knapp, K.L.; Biddanda, B.A. 2018: Modeling reveals the role of coastal upwelling and hydrologic inputs on biologically distinct water exchanges in a Great Lakes estuary. Estuarine, Coastal and Shelf Science 209: 41-55
Schultmann, F.; Zumkeller, M.; Rentz, O. 2006: Modeling reverse logistic tasks within closed-loop supply chains: An example from the automotive industry. European Journal of Operational Research 171(3): 1033-1050
Rohlfs, W.; Thiel, G.P.; Lienhard V, J.H. 2016: Modeling reverse osmosis element design using superposition and an analogy to convective heat transfer. Journal of Membrane Science 512: 38-49
Li, H.; Wen, G. 2019: Modeling reverse thinking for machine learning. Soft Computing 24(2): 1483-1496
Wiff, D.; Lampert, W.; Eiting, C.; McDaniel, G.; Glassford, K. 2005: Modeling rhenium metallization of a silicon-rich (001) 6H-Si C surface. Materials Science in Semiconductor Processing 8(4): 497-501
Gimon, D. 2021: Modeling ride requests and altruism in a socially connected dock-less vehicle sharing system. Travel Behaviour and Society 22: 166-174
Deng, L.; Lou, W.; Mitsakakis, N. 2018: Modeling right-censored medical cost data in regression and the effects of covariates. Statistical Methods-Applications 28(1): 143-155
Lindsay, J.; Laidre, K.; Conn, P.; Moreland, E.; Boveng, P. 2021: Modeling ringed seal Pusa hispida habitat and lair emergence timing in the eastern Bering and Chukchi Seas. Endangered Species Research 46: 1-17
Pal, S.; Sarda, R. 2021: Modeling riparian flood plain wetland water richness in pursuance of damming and linking it with a methane emission rate. Geocarto International: 1-29
Kumar, G.; Maiti, J. 2012: Modeling risk based maintenance using fuzzy analytic network process. Expert Systems with Applications 39(11): 9946-9954
Claypool, E.; Norman, B.A.; Needy, K.L. 2014: Modeling risk in a Design for Supply Chain problem. Computers-Industrial Engineering 78: 44-54
Tashman, A.; Frey, R.J. 2009: Modeling risk in arbitrage strategies using finite mixtures§. Quantitative Finance 9(5): 495-503
Zhang, C.; Durgan, S.D.; Lagomasino, D. 2019: Modeling risk of mangroves to tropical cyclones: a case study of Hurricane Irma. Estuarine, Coastal and Shelf Science 224: 108-116
Di Pace, R.; Marinelli, M.; Bifulco, G.N.; Dell‟orco, M. 2011: Modeling risk perception in ATIS context through Fuzzy Logic. Procedia - Social and Behavioral Sciences 20: 916-926
Wadhera, T.; Kakkar, D. 2020: Modeling risk perception using independent and social learning: application to individuals with autism spectrum disorder. The Journal of Mathematical Sociology 45(4): 223-245
Potter, C.; Shupe, J.; Gross, P.; Genovese, V.; Klooster, S. 2010: Modeling river discharge rates in California watersheds. Journal of Water and Climate Change 1(1): 36-54
Schiller, R.V.; Kourafalou, V.H. 2010: Modeling river plume dynamics with the HYbrid Coordinate Ocean Model. Ocean Modelling 33(1-2): 101-117
Iosif, R.; Iosif, R.; Rozylowicz, L.; Iosif, R.; Rozylowicz, L.; Popescu, V.D. 2013: Modeling road mortality hotspots of Eastern Hermann's tortoise in Romania. Amphibia-Reptilia 34(2): 163-172
Khan, N.M.; Soobhug, A.D.; Jannoo, Z. 2020: Modeling road traffic accidents in Mauritius using clustered longitudinal COM-Poisson with gamma random effects. Communications in Statistics: Case Studies, Data Analysis and Applications: 1-15
Huang, H.; Chin, H.C. 2010: Modeling road traffic crashes with zero-inflation and site-specific random effects. Statistical Methods-Applications 19(3): 445-462
Ali, S.; Briand, L.C.; Hemmati, H. 2011: Modeling robustness behavior using aspect-oriented modeling to support robustness testing of industrial systems. Software-Systems Modeling 11(4): 633-670
Ning, Y.; An, X.; Lü, Q.; Ma, G. 2012: Modeling rock failure using the numerical manifold method followed by the discontinuous deformation analysis. Acta Mechanica Sinica 28(3): 760-773
Chiu, C.; Weng, M.; Huang, T. 2016: Modeling rock joint behavior using a rough-joint model. International Journal of Rock Mechanics and Mining Sciences 89: 14-25
Jiang, Q.; Feng, X.; Song, L.; Gong, Y.; Zheng, H.; Cui, J. 2015: Modeling rock specimens through 3D printing: Tentative experiments and prospects. Acta Mechanica Sinica 32(1): 101-111
Ghafoori, M.; Tabatabaei-Nejad, S.A.; Khodapanah, E. 2017: Modeling rock-fluid interactions due to CO2 injection into sandstone and carbonate aquifer considering salt precipitation and chemical reactions. Journal of Natural Gas Science and Engineering 37: 523-538
Paris, A.; Peytavie, A.; Guérin, E.; Dischler, J.; Galin, E. 2020: Modeling rocky scenery using implicit blocks. The Visual Computer 36(10-12): 2251-2261
Zhao, L.; Foster, T. 1999: Modeling roles with Cascade. IEEE Software 16(5): 86-93
Zhou, Q.; Xie, L.; Wang, X.; Jin, X.; Wang, Z.; Wang, J.; Jia, Z.; Keer, L.M.; Wang, Q. 2016: Modeling rolling contact fatigue lives of composite materials based on the dual beam FIB/SEM technique. International Journal of Fatigue 83: 201-208
Schwartz-Chassidim, H.; Meyer, J.; Parmet, Y. 2014: Modeling route complexity ratings. Proceedings of the Human Factors and Ergonomics Society Annual Meeting 58(1): 1696-1700
Zhang, G.; Fenicia, F.; Rientjes, T.; Reggiani, P.; Savenije, H. 2005: Modeling runoff generation in the Geer river basin with improved model parameterizations to the REW approach. Physics and Chemistry of the Earth, Parts A/B/C 30(4-5): 285-296
Dolzhenko, E.; Ligatti, J.; Reddy, S. 2014: Modeling runtime enforcement with mandatory results automata. International Journal of Information Security 14(1): 47-60
Zoughbi, G.; Briand, L.; Labiche, Y. 2010: Modeling safety and airworthiness (RTCA DO-178B) information: conceptual model and UML profile. Software-Systems Modeling 10(3): 337-367
Chen, E.; Tarko, A.P. 2014: Modeling safety of highway work zones with random parameters and random effects models. Analytic Methods in Accident Research 1: 86-95
Zhang, D.; Zabarankin, M.; Prigiobbe, V. 2019: Modeling salinity-dependent transport of viruses in porous media. Advances in Water Resources 127: 252-263
Hedger, R.; Diserud, O.; Finstad, B.; Jensen, A.; Hendrichsen, D.; Ugedal, O.; Næsje, T. 2021: Modeling salmon lice effects on sea trout population dynamics using an individual-based approach. Aquaculture Environment Interactions 13: 145-163
Caballero, D.; Caro, A.; Rodríguez, P.G.; Durán, M.L.; Ávila, M.d.M.; Palacios, R.; Antequera, T.; Pérez-Palacios, T. 2016: Modeling salt diffusion in Iberian ham by applying MRi and data mining. Journal of Food Engineering 189: 115-122
Andrews, S.; Gross, E.; Hutton, P. 2017: Modeling salt intrusion in the San Francisco Estuary prior to anthropogenic influence. Continental Shelf Research 146: 58-81
Lo Giudice, A.; Giammanco, G.; Fransos, D.; Preziosi, L. 2018: Modeling sand slides by a mechanics-based degenerate parabolic equation. Mathematics and Mechanics of Solids 24(8): 2558-2575
Gholami, V.; Aghagoli, H.; Kalteh, A.M. 2015: Modeling sanitary boundaries of drinking water wells on the Caspian Sea southern coasts, Iran. Environmental Earth Sciences 74(4): 2981-2990
Rodrigues, I.P.; Oliveira, P.A.; Ambrosio, A.M.; Chagas, R.A. 2021: Modeling satellite battery aging for an operational satellite simulator. Advances in Space Research 67(6): 1981-1999
Weng, M.; Chen, T.; Tsai, S. 2016: Modeling scale effects on consequent slope deformation by centrifuge model tests and the discrete elementmethod. Landslides 14(3): 981-993
Kozma, R.; Puljic, M. 2007: Modeling scale-free neurodynamics using neuropercolation approach. PAMM 7(1): 1122001-1122002
Marston, P.L.; Osterhoudt, C.F. 2003: Modeling scattering enhancements at isolated resonances using energy conservation, reciprocity, symmetry, and the optical theorem. Journal of the Acoustical Society of America 113(4): 2284-2285
Bang, Y.S.; Lee, G.H.; Woo, S.W. 2015: Modeling scheme of the Safety Injection Tank with Fluidic Device for best estimate calculation of LBLOCA. Annals of Nuclear Energy 75: 605-610
Börner, K.; Glänzel, W.; Scharnhorst, A.; van den Besselaar, P. 2011: Modeling science: studying the structure and dynamics of science. Scientometrics 89(1): 347-348
Tan, H.; Warburton, W. 2011: Modeling scintillation light absorption and re-emission in Sr I2(Eu) scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 652(1): 221-225
Sánchez, F.; Medina-Tanco, G. 2010: Modeling scintillator and WLS fiber signals for fast Monte Carlo simulations. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 620(2-3): 182-191
Arampatzis, A.; Robertson, S. 2010: Modeling score distributions in information retrieval. Information Retrieval 14(1): 26-46
Stephen, R.A. 1996: Modeling sea surface scattering by the time‐domain finite‐difference method. Journal of the Acoustical Society of America 100(4): 2070-2078
Stephen, R.A.; Swift, S.A. 1994: Modeling seafloor geoacoustic interaction with a numerical scattering chamber. Journal of the Acoustical Society of America 96(2): 973-990
Kretschmer, K.; Jonkers, L.; Kucera, M.; Schulz, M. 2018: Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale. Biogeosciences 15(14): 4405-4429
Awale, M.; Kashikar, A.; Ramanathan, T. 2020: Modeling seasonal epidemic data using integer autoregressive model based on binomial thinning. Model Assisted Statistics and Applications 15(1): 1-17
Bai, Z.; Liu, D. 2015: Modeling seasonal measles transmission in China. Communications in Nonlinear Science and Numerical Simulation 25(1-3): 19-26
Day, C.A.; Liebman, J. 2021: Modeling seasonal sediment yields for a medium-scale temperate forest/agricultural watershed. Physical Geography: 1-24
Agrawal, N.; Pandey, V.K.; Mishra, S.K.; Pandey, V.S. 2020: Modeling seasonal trends in optimum temperatures over India. Journal of Water and Climate Change 12(5): 1420-1436
Ulrich, J.; Fauer, F.S.; Rust, H.W. 2021: Modeling seasonal variations of extreme rainfall on different timescales in Germany. Hydrology and Earth System Sciences 25(12): 6133-6149
Gong, X.; Shi, J.; Gao, H. 2014: Modeling seasonal variations of subsurface chlorophyll maximum in South China Sea. Journal of Ocean University of China 13(4): 561-571
Azcarate, S.M.; de Araújo Gomes, A.; Muñoz de la Peña, A.; Goicoechea, H.C. 2018: Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications. TrAC Trends in Analytical Chemistry 107: 151-168
Ohya, K.; Yamanaka, T. 2013: Modeling secondary electron emission from nanostructured materials in helium ion microscope. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 315: 295-299
Couvidat, F.; Seigneur, C. 2011: Modeling secondary organic aerosol formation from isoprene oxidation under dry and humid conditions. Atmospheric Chemistry and Physics 11(2): 893-909
Chen, J.; Griffin, R.J.; Grini, A.; Tulet, P. 2007: Modeling secondary organic aerosol formation through cloud processing of organic compounds. Atmospheric Chemistry and Physics 7(20): 5343-5355
Couvidat, F.; Kim, Y.; Sartelet, K.; Seigneur, C.; Marchand, N.; Sciare, J. 2013: Modeling secondary organic aerosol in an urban area: application to Paris, France. Atmospheric Chemistry and Physics 13(2): 983-996
Ficco, M.; Palmieri, F.; Castiglione, A. 2014: Modeling security requirements for cloud-based system development. Concurrency and Computation: Practice and Experience 27(8): 2107-2124
Liu, X.; Huang, W. 2009: Modeling sediment resuspension and transport induced by storm wind in Apalachicola Bay, USA. Environmental Modelling-Software 24(11): 1302-1313
Wang, X.; Hao, R.; Huo, J.; Zhang, J. 2008: Modeling sediment transport in river networks. Physica A: Statistical Mechanics and its Applications 387(25): 6421-6430
Jennings, A. 2003: Modeling sedimentation and scour in small urban lakes. Environmental Modelling-Software 18(3): 281-291
Chen, X.; Wang, X.; Wang, H. 2015: Modeling segmentation cracking of a brittle coating due to underneath periodic eigenstrains. Mechanics Research Communications 66: 27-33
Beckermann, C. 1997: Modeling segregation and grain structure development in equiaxed solidification with convection. JOM 49(3): 13-17
Deng, Z.; Umbanhowar, P.B.; Ottino, J.M.; Lueptow, R.M. 2019: Modeling segregation of polydisperse granular materials in developing and transient free‐surface flows. AIChE Journal 65(3): 882-893
Deng, Z.; Fan, Y.; Theuerkauf, J.; Jacob, K.V.; Umbanhowar, P.B.; Lueptow, R.M. 2020: Modeling segregation of polydisperse granular materials in hopper discharge. Powder Technology 374: 389-398
Blanchette-Guertin, J.; Johnson, C.L.; Lawrence, J.F. 2015: Modeling seismic energy propagation in highly scattering environments. Journal of Geophysical Research: Planets 120(3): 515-537
Leng, J.; Peterman, K.D.; Bian, G.; Buonopane, S.G.; Schafer, B.W. 2017: Modeling seismic response of a full-scale cold-formed steel-framed building. Engineering Structures 153: 146-165
Kot, M. 2009: Modeling selected real-time database concurrency control protocols in Uppaal. Innovations in Systems and Software Engineering 5(2): 129-138
Lovett, M. C. 2002: Modeling selective attention: not just another model of Stroop (NJAMOS). Cognitive Systems Research 3(1): 67-76
Qiao, Y.; Lian, C.; Lu, B.; Wu, J. 2018: Modeling selective ion adsorption into cylindrical nanopores. Chemical Physics Letters 709: 116-124
Sun, S.J.; Chang, Y. 2000: Modeling self-assembled quantum dots by the effective bond-orbital method. Physical Review B 62(20): 13631-13640
Vekhter, B.; Berry, R.S. 1999: Modeling self-assembling of proteins: Assembled structures, relaxation dynamics, and phase coexistence. The Journal of Chemical Physics 110(4): 2195-2201
Song, K.; Hu, X. 2017: Modeling self-assembly and capture phenomenon of two droplets in high aspect ratio microchannels. Computers-Fluids 144: 10-18
Aranovich, G.L.; Donohue, M.D. 2002: Modeling self-assembly in molecular fluids. The Journal of Chemical Physics 116(16): 7255-7268
Rai, B.; Pradip, 2017: Modeling self-assembly of surfactants at interfaces. Current Opinion in Chemical Engineering 15: 84-94
Cho, H.; Lo, S. 2002: Modeling self-consistent multi-class dynamic traffic flow. Physica A: Statistical Mechanics and its Applications 312(3-4): 342-362
Westcott, T.P.; Tobias, I.; Olson, W.K. 1997: Modeling self-contact forces in the elastic theory of DNA supercoiling. The Journal of Chemical Physics 107(10): 3967-3980
Ito, J.Y.; Pynadath, D.V.; Marsella, S.C. 2009: Modeling self-deception within a decision-theoretic framework. Autonomous Agents and Multi-Agent Systems 20(1): 3-13
Chroneos, A.; Vovk, R. 2015: Modeling self-diffusion in UO2 and Th O2 by connecting point defect parameters with bulk properties. Solid State Ionics 274: 1-3
Balazs, A.C. 2007: Modeling self-healing materials. Materials Today 10(9): 18-23
Nogueira, A.; Salvador, P.; Valadas, R.; Pacheco, A. 2010: Modeling self-similar traffic over multiple time scales based on hierarchical Markovian and L-System models. Computer Communications 33: S3-S10
Turlo, V.; Politano, O.; Baras, F. 2016: Modeling self-sustaining waves of exothermic dissolution in nanometric Ni-Al multilayers. Acta Materialia 120: 189-204
Takase, S.; Okazaki, N.; Inui, K. 2016: Modeling semantic compositionality of relational patterns. Engineering Applications of Artificial Intelligence 50: 256-264
Wen, K.; Zeng, Y.; Li, R.; Lin, J. 2011: Modeling semantic information in engineering applications: a review. Artificial Intelligence Review 37(2): 97-117
Cao, J.; Zhang, N.; James, L.A.; Johansen, T.E. 2018: Modeling semi-steady state near-well flow performance for horizontal wells in anisotropic reservoirs. Computational Geosciences 22(3): 725-744
Lundstrom, M.; Schuelke, R. 1982: Modeling semiconductor heterojunctions in equilibrium. Solid-State Electronics 25(8): 683-691
Wu, J.; Chien, C. 2008: Modeling semiconductor testing job scheduling and dynamic testing machine configuration. Expert Systems with Applications 35(1-2): 485-496
Broedersz, C.; MacKintosh, F. 2014: Modeling semiflexible polymer networks. Reviews of Modern Physics 86(3): 995-1036
Butala, P.; Szpalski, C.; Knobel, D.; Crawford, J.L.; Marchac, A.; Davidson, E.H.; Sultan, S.M.; Wetterau, M.; Saadeh, P.B.; Warren, S.M. 2010: Modeling senescent wound healing with the Zmpste24 transgenic mouse. Journal of the American College of Surgeons 211(3): S78-S79
Zhang, M.; Zhao, C.; Yang, Y.; Du, Q.; Shen, Y.; Lin, S.; Gu, D.; Su, W.; Liu, C. 2021: Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China. Geoscientific Model Development 14(10): 6155-6175
Steiner, M.; Agnew, S. 2015: Modeling sensitization of Al–Mg alloys via β-phase precipitation kinetics. Scripta Materialia 102: 55-58
Elias, P.Z.; Jarchow, T.; Young, L.R. 2008: Modeling sensory conflict and motion sickness in artificial gravity. Acta Astronautica 62(2-3): 224-231
Miranda, D.; Costa, C.; Almeida, A.; Lanceros-Méndez, S. 2015: Modeling separator membranes physical characteristics for optimized lithium ion battery performance. Solid State Ionics 278: 78-84
Bresco, M.; Turchi, M.; De Bie, T.; Cristianini, N. 2007: Modeling sequence evolution with kernel methods. Computational Optimization and Applications 38(2): 281-298
Rudolf, G.; Noyan, N.; Giard, V. 2014: Modeling sequence scrambling and related phenomena in mixed-model production lines. European Journal of Operational Research 237(1): 177-195
Liu, Y.; Cirillo, C. 2020: Modeling sequences of discrete and continuous variables over time with an application to the vehicle ownership and usage problem. Transportmetrica B: Transport Dynamics 8(1): 332-350
Katipoglu-Yazan, T.; Ubay Cokgor, E.; Orhon, D. 2014: Modeling sequential ammonia oxidation kinetics in enriched nitrifying microbial culture. Journal of Chemical Technology-Biotechnology 90(1): 72-79
Olds, V.A.; Fraser, N.M.; Kilgour, D.M. 1994: Modeling sequential responses in interactive decisions. Group Decision and Negotiation 3(3): 303-319
Nduka, U.C.; Iwueze, I.S.; Nwaigwe, C.C. 2021: Modeling serially correlated heavy-tailed data with some missing response values using stochastic EM algorithm. Communications in Statistics: Case Studies, Data Analysis and Applications: 1-24
Raatikainen, K.E.E. 1992: Modeling service distributions in queueing network simulation. SIMULATION 59(2): 116-126
Balistreri, E.J.; Rutherford, T.F.; Tarr, D.G. 2009: Modeling services liberalization: the case of Kenya. Economic Modelling 26(3): 668-679
Ellis, K.; Silvestrini, R.; Varela, B.; Alharbi, N.; Hailstone, R. 2016: Modeling setting time and compressive strength in sodium carbonate activated blast furnace slag mortars using statistical mixture design. Cement and Concrete Composites 74: 1-6
Xu, X.; Xiao, Y.; Wang, N. 2012: Modeling sexual transmission of HIV/AIDS in Jiangsu province, China. Mathematical Methods in the Applied Sciences 36(2): 234-248
Ionescu, I.R.; Lupaşcu, O. 2015: Modeling shallow avalanche onset over complex basal topography. Advances in Computational Mathematics 42(1): 5-26
Wang, X.; Liu, Q. 2021: Modeling shallow geological flows on steep terrains using a specific differential transformation. Acta Mechanica 232(6): 2379-2394
Kuo, C.; Luca, I.; Tai, Y. 2009: Modeling shallow gravity-driven solid-fluid mixtures over arbitrary topography. Communications in Mathematical Sciences 7(1): 1-36
Fent, I.; Putti, M.; Gregoretti, C.; Lanzoni, S. 2018: Modeling shallow water flows on general terrains. Advances in Water Resources 121: 316-332
Lannes, D. 2020: Modeling shallow water waves. Nonlinearity 33(5): R1-R57
Xiao, R. 2019: Modeling shape-memory effects in amorphous polymers. Materials Today: Proceedings 16: 1462-1468
Repetowicz, P.; Richmond, P. 2004: Modeling share price evolution as a continuous time random walk (CTRW) with non-independent price changes and waiting times. Physica A: Statistical Mechanics and its Applications 344(1-2): 108-111
Iacobucci, R.; McLellan, B.; Tezuka, T. 2018: Modeling shared autonomous electric vehicles: Potential for transport and power grid integration. Energy 158: 148-163
Nehdi, M.; Greenough, T. 2007: Modeling shear capacity of RC slender beams without stirrups using genetic algorithms. Smart Structures and Systems 3(1): 51-68
Jiang, C.; Liang, G. 2021: Modeling shear strength of medium- to ultra-high-strength concrete beams with stirrups using SVR and genetic algorithm. Soft Computing 25(16): 10661-10675
Hossain, K.M.A.; Gladson, L.R.; Anwar, M.S. 2016: Modeling shear strength of medium- to ultra-high-strength steel fiber-reinforced concrete beams using artificial neural network. Neural Computing and Applications 28(S 1): 1119-1130
Shelley, A.; Savage, M.; Williams, C.; Aoki, Y.; Gurevich, B. 2014: Modeling shear wave splitting due to stress-induced anisotropy, with an application to Mount Asama Volcano, Japan. Journal of Geophysical Research: Solid Earth 119(5): 4269-4286
Nébouy, M.; de Almeida, A.; Chazeau, L.; Baeza, G.P. 2019: Modeling shear-induced crystallization in startup flow: the case of segmented copolymers. Journal of Rheology 63(5): 837-850
Jupp, L.; Kawakatsu, T.; Yuan, X. 2003: Modeling shear-induced phase transitions of binary polymer mixtures. The Journal of Chemical Physics 119(12): 6361-6372
Sinha, K.; Mahesh, K.; Candler, G.V. 2003: Modeling shock unsteadiness in shock/turbulence interaction. Physics of Fluids 15(8): 2290-2297
Medici, E.F.; Allen, J.S.; Waite, G.P. 2014: Modeling shock waves generated by explosive volcanic eruptions. Geophysical Research Letters 41(2): 414-421
Alves, M.M.; Johansen, C.T. 2021: Modeling shock-wave strength near a partially opened diaphragm in a shock tube. Shock Waves 31(5): 499-508
Silling, S.A.; Parks, M.L.; Kamm, J.R.; Weckner, O.; Rassaian, M. 2017: Modeling shockwaves and impact phenomena with Eulerian peridynamics. International Journal of Impact Engineering 107: 47-57
Zhang, J.; Yuan, J.; Ma, Y. 2000: Modeling short channel effect on high-k and stacked-gate MOSFETs. Solid-State Electronics 44(11): 2089-2091
Bargaoui, Z.K.; Bardossy, A. 2015: Modeling short duration extreme precipitation patterns using copula and generalized maximum pseudo-likelihood estimation with censoring. Advances in Water Resources 84: 1-13
Pardue, J.H.; Clark, T.D.; Winch, G.W. 1999: Modeling short- and long-term dynamics in the commercialization of technical advances in IT producing industries. System Dynamics Review 15(1): 97-105
Pomogaeva, A.; Thompson, D.W.; Chipman, D.M. 2011: Modeling short-range contributions to hydration energies with minimal parameterization. Chemical Physics Letters 511(1-3): 161-165
Wang, X.; Wang, Y.; Wang, D.; Liu, X. 2015: Modeling short-term post-offering price-volume relationships using Bayesian change-point panel quantile regression. Applied Stochastic Models in Business and Industry 32(2): 259-272
Formetta, G.; Rigon, R.; Chávez, J.L.; David, O. 2013: Modeling shortwave solar radiation using the JGrass-New Age system. Geoscientific Model Development 6(4): 915-928
Vonnahme, T.R.; Leroy, M.; Thoms, S.; van Oevelen, D.; Harvey, H.R.; Kristiansen, S.; Gradinger, R.; Dietrich, U.; Völker, C. 2021: Modeling silicate–nitrate–ammonium co-limitation of algal growth and the importance of bacterial remineralization based on an experimental Arctic coastal spring bloom culture study. Biogeosciences 18(5): 1719-1747
Bennett, H.S. 1987: Modeling silicon emitters for VLSi transistors. Solid-State Electronics 30(11): 1137-1141
Carvalho, M.; Lozano, M.A.; Serra, L.M.; Wohlgemuth, V. 2012: Modeling simple trigeneration systems for the distribution of environmental loads. Environmental Modelling-Software 30: 71-80
Xia, K.; Zhu, Z.; Zhang, H.; Xu, Z. 2019: Modeling simplification for thermal mechanical stress analysis of TSV interposer stack. Microelectronics Reliability 96: 46-50
Hendrix, G.G. 1973: Modeling simultaneous actions and continuous processes. Artificial Intelligence 4(3-4): 145-180
Seifi, M.; Fazaelipoor, M.H. 2012: Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor. Applied Mathematical Modelling 36(11): 5603-5613
Jaramillo, F.; Keles, B.; Erkoc, M. 2019: Modeling single machine preemptive scheduling problems for computational efficiency. Annals of Operations Research 285(1-2): 197-222
Sholl, D.S. 2000: Modeling single-component permeation through a zeolite membrane from atomic-scale principles. Nanoporous Materials II, Proceedings of the 2nd Conference on Access in Nanoporous Materials: 649-654
Chan, E.J.; Welberry, T.R.; Heerdegen, A.P.; Goossens, D.J. 2009: Modeling single-crystal diffuse scattering on polymorphs of the drug benzocaine. Acta Crystallographica Section A Foundations of Crystallography 65(a 1): S102-S103
Vuorinen, K.; Gaffiot, F.; Jacquemod, G. 1997: Modeling single-mode lasers and standard single-mode fibers using a hardware description language. IEEE Photonics Technology Letters 9(6): 824-826
Manière, C.; Kerbart, G.; Harnois, C.; Marinel, S. 2020: Modeling sintering anisotropy in ceramic stereolithography of silica. Acta Materialia 182: 163-171
Chen, D.; Zheng, Z.; Wang, J.; Tang, H. 2016: Modeling sintering behavior of metal fibers with different fiber angles. Rare Metals 37(10): 886-893
Zhou, B.; Zheng, X.; Kang, Z.; Xue, S. 2019: Modeling size-dependent thermo-mechanical behaviors of shape memory polymer Bernoulli-Euler microbeam. Applied Mathematics and Mechanics 40(11): 1531-1546
Rashahmadi, S.; Meguid, S.A. 2018: Modeling size-dependent thermoelastic energy dissipation of graphene nanoresonators using nonlocal elasticity theory. Acta Mechanica 230(3): 771-785
Incurvati, M.; Terranova, F. 2003: Modeling skin effect in large magnetized iron detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 500(1-3): 441-445
Song, Y.T.; Lee, T.; Moon, J.; Qu, T.; Yueh, S. 2015: Modeling skin-layer salinity with an extended surface-salinity layer. Journal of Geophysical Research: Oceans 120(2): 1079-1095
Assumpção, A.H.; Martins-Costa, M.L.; Freitas Rachid, F.B.d.; Saldanha da Gama, R.M. 2017: Modeling slack flow in hydraulic pipelines by means of a consistent thermodynamic theory. International Journal of Non-Linear Mechanics 95: 82-92
Boraas, S. 1984: Modeling slag deposition in the Space Shuttle solid rocket motor. Journal of Spacecraft and Rockets 21(1): 47-54
Greenberg, R. 1986: Modeling sleep: we need all the perspectives we can get!. Behavioral and Brain Sciences 9(3): 406-407
Deibel, K.; Raemy, C.; Wegener, K. 2014: Modeling slice-push cutting forces of a sheet stack based on fracture mechanics. Engineering Fracture Mechanics 124-125: 234-247
Kannam, S.K.; Daivis, P.J.; Todd, B. 2017: Modeling slip and flow enhancement of water in carbon nanotubes. MRS Bulletin 42(04): 283-288
Pagan, D.C.; Shade, P.A.; Barton, N.R.; Park, J.; Kenesei, P.; Menasche, D.B.; Bernier, J.V. 2017: Modeling slip system strength evolution in Ti-7Al informed by in-situ grain stress measurements. Acta Materialia 128: 406-417
Li, D.; Liu, Y. 2017: Modeling slow-slip segmentation in Cascadia subduction zone constrained by tremor locations and gravity anomalies. Journal of Geophysical Research: Solid Earth 122(4): 3138-3157
Yvonne, L.; Ahamada, Z.; Noble, B.; Joshua, W.; Isa, K.; Robert, K.; Peter, T. 2016: Modeling sludge accumulation rates in lined pit latrines in slum areas of Kampala City, Uganda. African Journal of Environmental Science and Technology 10(8): 253-262
Yeh, I. 2007: Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cement and Concrete Composites 29(6): 474-480
Chandwani, V.; Agrawal, V.; Nagar, R. 2015: Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks. Expert Systems with Applications 42(2): 885-893
Ekenberg, T.; Newcomer, M. 1990: Modeling small diameter straw tubes in terms of their high frequency electrical characteristics. IEEE Transactions on Nuclear Science 37(2): 68-71
Draskovic, I.; Holdrinet, R.; Bulte, J.; Bolhuis, S.; Leeuwe, J.V. 2004: Modeling small group learning. Instructional Science 32(6): 447-473
Hodges, M.P.; Stone, A.J. 1999: Modeling small hydronium–water clusters. The Journal of Chemical Physics 110(14): 6766-6772
Chen, J.; Farson, D.F.; Ely, K.; Frech, T. 2005: Modeling small-scale resistance spot welding machine dynamics for process control. International Journal of Advanced Manufacturing Technology 27(7-8): 672-676
Schellander, H.; Hell, T. 2018: Modeling snow depth extremes in Austria. Natural Hazards 94(3): 1367-1389
Rosendahl, P.L.; Weißgraeber, P. 2020: Modeling snow slab avalanches caused by weak-layer failure – Part 1: Slabs on compliant and collapsible weak layers. The Cryosphere 14(1): 115-130
Rosendahl, P.L.; Weißgraeber, P. 2020: Modeling snow slab avalanches caused by weak-layer failure – Part 2: Coupled mixed-mode criterion for skier-triggered anticracks. The Cryosphere 14(1): 131-145
Siegle, M.; Lames, M. 2013: Modeling soccer by means of relative phase. Journal of Systems Science and Complexity 26(1): 14-20
Chu, M.L.; Parigi, P.; Law, K.; Latombe, J. 2014: Modeling social behaviors in an evacuation simulator. Computer Animation and Virtual Worlds 25(3-4): 373-382
Mao, W.; Gratch, J. 2009: Modeling social inference in virtual agents. AI-SOCIETY 24(1): 5-11
Hartmann, W.R.; Manchanda, P.; Nair, H.; Bothner, M.; Dodds, P.; Godes, D.; Hosanagar, K.; Tucker, C. 2008: Modeling social interactions: Identification, empirical methods and policy implications. Marketing Letters 19(3-4): 287-304
Beheshti, R. 2015: Modeling social norms in real-world agent-based simulations. AI Matters 2(1): 9-11
Sutherland, J.; Hassein, U.; Day, D.; Easa, S. 2022: Modeling social rejection, physiological arousal, and peer influence on risky driving among adolescents and young adults. Transportation Research Part F: Traffic Psychology and Behaviour 84: 114-138
Medina-Borja, A.; Triantis, K. 2011: Modeling social services performance: a four-stage DEA approach to evaluate fundraising efficiency, capacity building, service quality, and effectiveness in the nonprofit sector. Annals of Operations Research 221(1): 285-307
Liu, B.; Wei, L. 2018: Modeling social support on social media: Effect of publicness and the underlying mechanisms. Computers in Human Behavior 87: 263-275
Ghosh, I.; Singh, V.K. 2018: Modeling social support scores using phone use patterns. Proceedings of the Association for Information Science and Technology 55(1): 133-142
Wu, Z.; Zou, M. 2014: Modeling social tagging using latent interaction potential. Physica A: Statistical Mechanics and its Applications 413: 125-133
Forrester, J.; Greaves, R.; Noble, H.; Taylor, R. 2014: Modeling social-ecological problems in coastal ecosystems: a case study. Complexity 19(6): 73-82
Touceda, M.I.; Neila, F.J.; Degrez, M. 2016: Modeling socioeconomic pathways to assess sustainability: a tailored development for housing retrofit. The International Journal of Life Cycle Assessment 23(3): 710-725
Singh, R.S.; Hernandez, R. 2018: Modeling soft core-shell colloids using stochastic hard collision dynamics. Chemical Physics Letters 708: 233-240
Kadayif, I.; Sen, H.; Koyuncu, S. 2010: Modeling soft errors for data caches and alleviating their effects on data reliability. Microprocessors and Microsystems 34(6): 200-214
Lamorgese, A.; Mauri, R.; Sagis, L. 2017: Modeling soft interface dominated systems: a comparison of phase field and Gibbs dividing surface models. Physics Reports 675: 1-54
Littlewood, B.; Popov, P.; Strigini, L. 2001: Modeling software design diversity. ACM Computing Surveys 33(2): 177-208
Martín, D.; García Guzmán, J.; Urbano, J.; Amescua, A. 2013: Modeling software development practices using reusable project patterns: a case study. Journal of Software: Evolution and Process 26(3): 339-349
Lee, H.; Chung, K.; Park, H.; Choi, K. 2011: Modeling software requirement with timing diagram and Simulink Stateflow. Information and Software Technology 53(5): 484-493
Engel, A.; Last, M. 2007: Modeling software testing costs and risks using fuzzy logic paradigm. Journal of Systems and Software 80(6): 817-835
Ryan, E.M.; Ogle, K.; Kropp, H.; Samuels-Crow, K.E.; Carrillo, Y.; Pendall, E. 2018: Modeling soil CO2 production and transport with dynamic source and diffusion terms: testing the steady-state assumption using DETECT v1.0. Geoscientific Model Development 11(5): 1909-1928
Pouya, A.; Vo, T.D.; Hemmati, S.; Tang, A.M. 2018: Modeling soil desiccation cracking by analytical and numerical approaches. International Journal for Numerical and Analytical Methods in Geomechanics 43(3): 738-763
Luo, Y.; Wang, H.; Meersmans, J.; Green, S.M.; Quine, T.A.; Feng, S. 2020: Modeling soil erosion between 1985 and 2014 in three watersheds on the carbonate-rock dominated Guizhou Plateau, SW China, using Wa TEM/SEDEM. Progress in Physical Geography: Earth and Environment 45(1): 53-81
Wang, G.; Zhang, W.; Sun, W.; Li, T.; Han, P. 2017: Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems. Atmospheric Chemistry and Physics 17(19): 11849-11859
Buondonno, A.; Coppola, E. 2001: Modeling soil ped formation: properties of aggregates formed by montmorillonitic clay, Al or Fe poorly-ordered oxides and polyphenol in acidic milieu. Studies in Surface Science and Catalysis: 87-101
Mesania, F.A.; Jennings, A.A. 2000: Modeling soil pile bioremediation. Environmental Modelling-Software 15(4): 411-424
Gadi, V.K.; Singh, S.R.; Li, J.; Song, L.; Zhu, H.; Garg, A.; Sreedeep, S. 2019: Modeling soil-crack–water–atmospheric interactions: a novel root water uptake approach to simulate the evaporation through cracked soil and experimental validation. Geotechnical and Geological Engineering 38(1): 935-946
Gadi, V.; Singh, S.; Singhariya, M.; Garg, A.; S., S.; K., R. 2018: Modeling soil-plant-water interaction. Engineering Computations 35(3): 1543-1566
Polo, J.; Martín-Chivelet, N.; Sanz-Saiz, C.; Alonso-Montesinos, J.; López, G.; Alonso-Abella, M.; Battles, F.J.; Marzo, A.; Hanrieder, N. 2021: Modeling soiling losses for rooftop PV systems in suburban areas with nearby forest in Madrid. Renewable Energy 178: 420-428
Morales-Acevedo, A.; Hernández-Como, N.; Casados-Cruz, G. 2012: Modeling solar cells: a method for improving their efficiency. Materials Science and Engineering: B177(16): 1430-1435
Muhammed, H.A.; Atrooshi, S.A. 2019: Modeling solar chimney for geometry optimization. Renewable Energy 138: 212-223
Hyun, S.; Taghizadeh-Hesary, F.; Shim, H.S. 2021: Modeling solar energy system demand using household-level data in Myanmar. Economic Analysis and Policy 69: 629-639
Hurlburt, N.E.; Derosa, M.L. 2004: Modeling solar magnetoconvection and coronal structures. Proceedings of the International Astronomical Union 2004(IAUS 223): 253-254
Rasca, A.P.; Horányi, M.; Oran, R.; van der Holst, B. 2014: Modeling solar wind mass-loading in the vicinity of the Sun using 3-D MHD simulations. Journal of Geophysical Research: Space Physics 119(1): 18-25
Flemming, A.; Adamy, J. 2008: Modeling solid oxide fuel cells using continuous-time recurrent fuzzy systems. Engineering Applications of Artificial Intelligence 21(8): 1289-1300
Soto, F.; Martinez de la Hoz, J.; Seminario, J.; Balbuena, P. 2016: Modeling solid-electrolyte interfacial phenomena in silicon anodes. Current Opinion in Chemical Engineering 13: 179-185
Netzer, D.W. 1977: Modeling solid-fuel ramjet combustion. Journal of Spacecraft and Rockets 14(12): 762-766
Metochianakis, M.E.; Netzer, D.W. 1983: Modeling solid-fuel ramjet combustion, including radiation to the fuel surface. Journal of Spacecraft and Rockets 20(4): 405-406
Lundstedt, C.; Harken, A.; Day, E.; Robertson, B.; Adenwalla, S. 2006: Modeling solid-state boron carbide low energy neutron detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 562(1): 380-388
Gheribi, A. E.; Lee, J. J. 2018: Modeling solid-state detonation based on thermochemical equilibrium calculations. Combustion Science and Technology: 1-6
Bretti, C.; Cigala, R.M.; Giuffrè, O.; Lando, G.; Sammartano, S. 2018: Modeling solubility and acid-base properties of some polar side chain amino acids in Na Cl and (CH 3 ) 4 NCl aqueous solutions at different ionic strengths and temperatures. Fluid Phase Equilibria 459: 51-64
Najafloo, A.; Feyzi, F.; Zoghi, A.T. 2016: Modeling solubility of CO 2 in aqueous MDEA solution using electrolyte SAFT-HR Eo S. Journal of the Taiwan Institute of Chemical Engineers 58: 381-390
Najafloo, A.; Zarei, S. 2018: Modeling solubility of CO 2 in aqueous monoethanolamine (MEA) solution using SAFT-HR equation of state. Fluid Phase Equilibria 456: 25-32
Shojaeian, A.; Fatoorehchi, H. 2019: Modeling solubility of refrigerants in ionic liquids using Peng Robinson-Two State equation of state. Fluid Phase Equilibria 486: 80-90
Nait Amar, M. 2020: Modeling solubility of sulfur in pure hydrogen sulfide and sour gas mixtures using rigorous machine learning methods. International Journal of Hydrogen Energy 45(58): 33274-33287
Steiner, M.; Garlea, E.; Agnew, S. 2016: Modeling solute segregation during the solidification of γ-phase U-Mo alloys. Journal of Nuclear Materials 474: 105-112
Gong, M.; Liu, F.; Chen, Y. 2016: Modeling solute segregation in grain boundaries of binary substitutional alloys: Effect of excess volume. Journal of Alloys and Compounds 682: 89-97
Rao, S.; Akdim, B.; Antillon, E.; Woodward, C.; Parthasarathy, T.; Senkov, O. 2019: Modeling solution hardening in BCC refractory complex concentrated alloys: Nb Ti Zr, Nb1.5Ti Zr0.5 and Nb0.5Ti Zr1.5. Acta Materialia 168: 222-236
Kalyuzhnyi, Y.; Vlachy, V.; Cummings, P. 2007: Modeling solution of flexible polyelectrolyte in explicit solvent. Chemical Physics Letters 438(4-6): 238-243
Eckert, C.A.; Bergmann, D.L.; Tomasko, D.L.; Ekart, M.P. 1993: Modeling solutions containing specific interactions. Accounts of Chemical Research 26(12): 621-627
Mielke, A.; Rossi, R.; Savaré, G. 2009: Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete-Continuous Dynamical Systems - A 25(2): 585-615
Pellegrini, M.; Doniach, S. 1995: Modeling solvation contributions to conformational free energy changes of biomolecules using a potential of mean force expansion. The Journal of Chemical Physics 103(7): 2696-2702
Margulis, C.J.; Coker, D.F. 2001: Modeling solvation of excited electronic states of flexible polyatomic molecules: Diatomics-in-molecules for I3 in argon clusters. The Journal of Chemical Physics 114(15): 6744-6749
Murugan, N.A.; Rinkevicius, Z.; Ågren, H. 2011: Modeling solvatochromism of Nile red in water. International Journal of Quantum Chemistry 111(7-8): 1521-1530
Xiao, R. 2016: Modeling solvent-activated shape-memory behaviors based on an analogy between solvent and temperature. RSC Advances 6(8): 6378-6383
Sealy, C. 2017: Modeling solves ultrahard material problem. Materials Today 20(7): 344-345
Almeida, R.; Bastos, N.R.O.; Monteiro, M.T.T. 2015: Modeling some real phenomena by fractional differential equations. Mathematical Methods in the Applied Sciences 39(16): 4846-4855
Sastry, G.P.; Ravuri, T.R. 1990: Modeling some two‐dimensional relativistic phenomena using an educational interactive graphics software. American Journal of Physics 58(11): 1066-1073
Josephson, A.J.; Linn, R.R.; Lignell, D.O. 2018: Modeling soot formation from solid complex fuels. Combustion and Flame 196: 265-283
Wick, A.; Nguyen, T.; Laurent, F.; Fox, R.O.; Pitsch, H. 2017: Modeling soot oxidation with the Extended Quadrature Method of Moments. Proceedings of the Combustion Institute 36(1): 789-797
Becker, K.M. 2006: Modeling sound progation in shallow water including dynamic internal wave fields. Journal of the Acoustical Society of America 119(5): 3226-3227
Shen, Y.; Willems, S.P. 2014: Modeling sourcing strategies to mitigate part obsolescence. European Journal of Operational Research 236(2): 522-533
Keir, P.D.; Ang, W.M.; Wager, J.F. 1995: Modeling space charge in alternating‐current thin‐film electroluminescent devices using a single‐sheet charge model. Journal of Applied Physics 78(7): 4668-4680
Saravanan, N.; Duyar, A.; Guo, T.H.; Merrill, W.C. 1994: Modeling space shuttle main engine using feed-forward neural networks. Journal of Guidance, Control, and Dynamics 17(4): 641-648
Lukassen, L.J.; Stevens, R.J.A.M.; Meneveau, C.; Wilczek, M. 2018: Modeling space-time correlations of velocity fluctuations in wind farms. Wind Energy 21(7): 474-487
Verweij, M.D. 1995: Modeling space‐time domain acoustic wave fields in media with attenuation: the symbolic manipulation approach. Journal of the Acoustical Society of America 97(2): 831-843
Shrestha, R.; Rizwan-uddin, 2014: Modeling space–time evolution of flux in a traveling wave reactor. Annals of Nuclear Energy 70: 90-95
Weng, Y.; Gong, P. 2016: Modeling spatial and temporal dependencies among global stock markets. Expert Systems with Applications 43: 175-185
Kim, D. 2018: Modeling spatial and temporal dynamics of plant species richness across tidal creeks in a temperate salt marsh. Ecological Indicators 93: 188-195
Lau, M.; Bar-Joseph, Z.; Kuffner, J. 2009: Modeling spatial and temporal variation in motion data. ACM Transactions on Graphics 28(5): 1-10
Bernardi, M.S.; Carey, M.; Ramsay, J.O.; Sangalli, L.M. 2018: Modeling spatial anisotropy via regression with partial differential regularization. Journal of Multivariate Analysis 167: 15-30
Scheuerman, J.; Venable, K.B.; Anderson, M.T.; Golob, E.J. 2018: Modeling spatial auditory attention in ACT-R: a constraint-based approach. Procedia Computer Science 145: 797-804
Du, W.; Ning, C. 2020: Modeling spatial cross-correlation of multiple ground motion intensity measures (SAs, PGA, PGV, Ia, CAV, and significant durations) based on principal component and geostatistical analyses. Earthquake Spectra 37(1): 486-504
Sarkar, A.; Chouhan, P. 2020: Modeling spatial determinants of urban expansion of Siliguri a metropolitan city of India using logistic regression. Modeling Earth Systems and Environment 6(4): 2317-2331
Ruth, M.; Pieper, F. 1994: Modeling spatial dynamics of sea-level rise in a coastal area. System Dynamics Review 10(4): 375-389
Okuyama, Y. 2004: Modeling spatial economic impacts of an earthquake: input‐output approaches. Disaster Prevention and Management: An International Journal 13(4): 297-306
Yuan, Z.; Wang, H.; Wang, L.; Lu, T.; Palaiahnakote, S.; Lim Tan, C. 2016: Modeling spatial layout for scene image understanding via a novel multiscale sum-product network. Expert Systems with Applications 63: 231-240
Kivila, A.; Book, W.; Singhose, W. 2021: Modeling spatial multi-link flexible manipulator arms based on system modes. International Journal of Intelligent Robotics and Applications 5(3): 300-312
Zografi, M.; Xekalaki, E. 2019: Modeling spatial overdispersion via the generalized Waring point process. Scandinavian Journal of Statistics 46(4): 1098-1116
Kennard, D.K.; Outcalt, K. 2006: Modeling spatial patterns of fuels and fire behavior in a longleaf pine forest in the Southeastern USA. Fire Ecology 2(1): 31-52
Lovvorn, J.R.; Jacob, U.; North, C.A.; Kolts, J.M.; Grebmeier, J.M.; Cooper, L.W.; Cui, X. 2015: Modeling spatial patterns of limits to production of deposit-feeders and ectothermic predators in the northern Bering Sea. Estuarine, Coastal and Shelf Science 154: 19-29
Zhao, X.; Stein, A.; Chen, X.; Feng, L. 2011: Modeling spatial-temporal change of Poyang Lake marshland based on an uncertainty theory - random sets. Procedia Environmental Sciences 3: 105-110
Jindal, A.; Psounis, K. 2006: Modeling spatially correlated data in sensor networks. ACM Transactions on Sensor Networks 2(4): 466-499
Markhvida, M.; Ceferino, L.; Baker, J.W. 2018: Modeling spatially correlated spectral accelerations at multiple periods using principal component analysis and geostatistics. Earthquake Engineering-Structural Dynamics 47(5): 1107-1123
Arnone, E.; Azzimonti, L.; Nobile, F.; Sangalli, L.M. 2019: Modeling spatially dependent functional data via regression with differential regularization. Journal of Multivariate Analysis 170: 275-295
Saloma, C.; Narisma, G. 1995: Modeling spatially extended complex systems from experimental data: Sensitivity to sampling intervals. Journal of Applied Physics 77(4): 1374-1377
Chen, M.; Gong, L.; Wang, T.; Liu, F.; Feng, Q. 2015: Modeling spatio-temporal layout with Lie Algebrized Gaussians for action recognition. Multimedia Tools and Applications 75(17): 10335-10355
Masud-Ul-Alam, M.; Khan, M.A.I.; Islam, M.N.; Rahman, S.M.M. 2020: Modeling spatio-temporal variability of suspended matter and its relation with hydrodynamic parameters in the northern Bay of Bengal. Modeling Earth Systems and Environment 7(4): 2517-2530
Ye, L.; Fang, L.; Tan, W.; Wu, C.; Wu, H. 2017: Modeling spatiotemporal distribution of PM10 using HJ-1 CCD data in Luoyang, China. Atmospheric Pollution Research 8(3): 555-563
Zhang, Z.; Zimmermann, N.E.; Kaplan, J.O.; Poulter, B. 2016: Modeling spatiotemporal dynamics of global wetlands: comprehensive evaluation of a new sub-grid TOPMODEL parameterization and uncertainties. Biogeosciences 13(5): 1387-1408
Santora, J.A.; Dorman, J.G.; Sydeman, W.J. 2016: Modeling spatiotemporal dynamics of krill aggregations: size, intensity, persistence, and coherence with seabirds. Ecography 40(11): 1300-1314
Scheider, S.; Gräler, B.; Pebesma, E.; Stasch, C. 2016: Modeling spatiotemporal information generation. International Journal of Geographical Information Science: 1-29
Ma, L.; Deng, M.; Wu, J.; Liu, Q. 2015: Modeling spatiotemporal topological relationships between moving object trajectories along road networks based on region connection calculus. Cartography and Geographic Information Science 43(4): 346-360
Zhu, X.; Tallman, R.F.; Howland, K.L.; Carmichael, T.J. 2016: Modeling spatiotemporal variabilities of length-at-age growth characteristics for slow-growing subarctic populations of Lake Whitefish, using hierarchical Bayesian statistics. Journal of Great Lakes Research 42(2): 308-318
Kim, M.S. 2013: Modeling special-day effects for forecasting intraday electricity demand. European Journal of Operational Research 230(1): 170-180
Piazzi, M.; Bennati, C.; Curcio, C.; Kuepferling, M.; Basso, V. 2016: Modeling specific heat and entropy change in La(Fe–Mn–Si)13–H compounds. Journal of Magnetism and Magnetic Materials 400: 349-355
Phillips, P.C. 2016: Modeling speculative bubbles with diverse investor expectations. Research in Economics 70(3): 375-387
Windt, L.d.; Schneider, H.; Ferry, C.; Catalette, H.; Lagneau, V.; Poinssot, C.; Poulesquen, A.; Jegou, C. 2006: Modeling spent nuclear fuel alteration and radionuclide migration in disposal conditions. Radiochimica Acta 94(9-11): 787-794
Rudowicz, C.; Tadyszak, K.; Ślusarski, T. 2019: Modeling spin Hamiltonian parameters for Fe2+ adatoms on Cu2N/Cu(1 0 0) surface: Semiempirical microscopic spin Hamiltonian approach. Journal of Magnetism and Magnetic Materials 485: 381-390
Picone, R.A.; Garbini, J.L.; Sidles, J.A. 2015: Modeling spin magnetization transport in a spatially varying magnetic field. Journal of Magnetism and Magnetic Materials 374: 440-450
Behnia, S.; Fathizadeh, S.; Akhshani, A. 2016: Modeling spin selectivity in charge transfer across the DNA/Gold interface. Chemical Physics 477: 61-73
Kuhn, W.; Xin He; Mojarradi, M. 2004: Modeling spiral inductors in SOS processes. IEEE Transactions on Electron Devices 51(5): 677-683
Lovinger, Z.; Rittel, D.; Rosenberg, Z. 2018: Modeling spontaneous adiabatic shear band formation in electro-magnetically collapsing thick-walled cylinders. Mechanics of Materials 116: 130-145
Ignatieva, K.; Trück, S. 2016: Modeling spot price dependence in Australian electricity markets with applications to risk management. Computers-Operations Research 66: 415-433
Wolfengagen, V.; Ismailova, L.; Kosikov, S.; Babushkin, D. 2021: Modeling spread, interlace and interchange of information processes with variable domains. Cognitive Systems Research 66: 21-29
Kelley, J.D.; Major, H.L. 2020: Modeling spring migration patterns of scoters and loons in the Bay of Fundy. Journal of Field Ornithology 91(3): 285-299
Ouled Ahmed Ben Ali, R.; Chatti, S. 2019: Modeling springback of thick sandwich panel using RSM. International Journal of Advanced Manufacturing Technology 103(9-12): 3375-3387
Moeenfard, H.; Ahmadian, M.T.; Farshidianfar, A. 2012: Modeling squeezed film air damping in torsional micromirrors using extended Kantorovich method. Meccanica 48(4): 791-805
Uzan, O.; Gozin, Y.; Martin, J.M. 1998: Modeling stabilization of SiO bonds by Pd/Pt complexes using density functional theory. Chemical Physics Letters 288(2-4): 356-362
Blöchliger, I. 2004: Modeling staff scheduling problems. a tutorial. European Journal of Operational Research 158(3): 533-542
Li, N.; Li, L. X. 2000: Modeling staffing flexibility: a case of China. European Journal of Operational Research 124(2): 255-266
Ballejos, L.C.; Montagna, J.M. 2011: Modeling stakeholders for information systems design processes. Requirements Engineering 16(4): 281-296
Zhang, X.; Lei, Y.; Liu, X. 2015: Modeling stand mortality using Poisson mixture models with mixed-effects. IForest - Biogeosciences and Forestry 8(3): 333-338
Zeng, Q.; Liu, Z.; Xu, D.; Zhuang, Z. 2014: Modeling stationary and moving cracks in shells by X-FEM with CB shell elements. Science China Technological Sciences 57(7): 1276-1284
Zhao, X.; Montgomery, T.; Zhang, S. 2015: Modeling stationary and moving pebbles in a pebble bed reactor. Annals of Nuclear Energy 80: 52-61
Stolk, P.; Widdershoven, F.; Klaassen, D. 1998: Modeling statistical dopant fluctuations in MOS transistors. IEEE Transactions on Electron Devices 45(9): 1960-1971
Maslov, L.A.; Chebotarev, V.I. 2017: Modeling statistics and kinetics of the natural aggregation structures and processes with the solution of generalized logistic equation. Physica A: Statistical Mechanics and its Applications 468: 691-697
Parisi, D.R.; Laborde, M.A. 2001: Modeling steady-state heterogeneous gas–solid reactors using feedforward neural networks. Computers-Chemical Engineering 25(9-10): 1241-1250
Hromadka, T. 1986: Modeling steady-state, advective contaminant transport by the complex variable boundary element method. Engineering Analysis with Boundary Elements 3(1): 9-14
Su, Y.; Li, R.; Song, G.; Li, J.; Xiang, C. 2018: Modeling steam heat transfer in thermal protective clothing under hot steam exposure. International Journal of Heat and Mass Transfer 120: 818-829
Bambach, M.; Häck, A.; Herty, M. 2017: Modeling steel rolling processes by fluid-like differential equations. Applied Mathematical Modelling 43: 155-169
Elhami Khorasani, N.; Garlock, M.E.; Quiel, S.E. 2015: Modeling steel structures in Open Sees: Enhancements for fire and multi-hazard probabilistic analyses. Computers-Structures 157: 218-231
Hata, K.; Shigekawa, H.; Okano, T.; Ueda, T.; Akiyama, M. 1997: Modeling step bunching formed on vicinal Ga As(001) annealed in as H3and hydrogen ambient. Physical Review B 55(11): 7039-7046
Woo, D.; Lee, T.; Nam, S. 2016: Modeling stepped U-slot DGS microstrip line. Microwave and Optical Technology Letters 58(3): 583-587
Karunarathne, S.; Marshall, T.C.; Stolzenburg, M.; Karunarathna, N.; Orville, R. E. 2015: Modeling stepped leaders using a time-dependent multidipole model and high-speed video data. Journal of Geophysical Research: Atmospheres 120(6): 2419-2436
Lagos, R.; Canessa, E.; Chaigneau, S.E. 2019: Modeling stereotypes and negative self‐stereotypes as a function of interactions among groups with power asymmetries. Journal for the Theory of Social Behaviour 49(3): 312-333
Li, X.; Yao, Z.; Lv, Q.; Liu, Z. 2016: Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. Journal of Sound and Vibration 382: 140-157
Bennett, T.; Baumgart, P.; Tam, A.; Grigoropoulos, C. 1997: Modeling stiction performance of laser-texture. IEEE Transactions on Magnetics 33(5): 3205-3207
Myatt, J.; Maximov, A.V.; Seka, W.; Craxton, R.S.; Short, R.W. 2004: Modeling stimulated Brillouin scattering in the underdense corona of a direct drive inertial confinement fusion target. Physics of Plasmas 11(7): 3394-3403
Mourenas, D.; Divol, L.; Casanova, M.; Rousseaux, C. 2001: Modeling stimulated Raman scattering for smoothed laser–solid target interaction at 0.53 μm. Physics of Plasmas 8(2): 557-563
Vlasic, A.; Day, T. 2016: Modeling stochastic anomalies in an SIS system. Stochastic Analysis and Applications 35(1): 27-39
Raghem-Moayed, A.; Dodson, C. 1999: Modeling stochastic fibre clumps. Applied Mathematics Letters 12(2): 7-11
Constantino, M.; Candido, O.; Tabak, B.; da Costa, R. 2017: Modeling stochastic frontier based on vine copulas. Physica A: Statistical Mechanics and its Applications 486: 595-609
Zhang, Y.; Brockett, P. 2020: Modeling stochastic mortality for joint lives through subordinators. Insurance: Mathematics and Economics 95: 166-172
Zheng, J.; Tong, C.; Zhang, G. 2018: Modeling stochastic mortality with O-U type processes. Applied Mathematics-A Journal of Chinese Universities 33(1): 48-58
Yoshioka, H.; Yoshioka, Y. 2019: Modeling stochastic operation of reservoir under ambiguity with an emphasis on river management. Optimal Control Applications and Methods 40(4): 764-790
Jia, C.; Qian, M.; Kang, Y.; Jiang, D. 2014: Modeling stochastic phenotype switching and bet-hedging in bacteria: stochastic nonlinear dynamics and critical state identification. Quantitative Biology 2(3): 110-125
Ke, H.; Ma, W.; Chen, X. 2012: Modeling stochastic project time–cost trade-offs with time-dependent activity durations. Applied Mathematics and Computation 218(18): 9462-9469
Alvarez-Ramirez, J.; Ibarra-Valdez, C. 2001: Modeling stock market dynamics based on conservation principles. Physica A: Statistical Mechanics and its Applications 301(1-4): 493-511
Gong, X.; Lin, B. 2019: Modeling stock market volatility using new HAR-type models. Physica A: Statistical Mechanics and its Applications 516: 194-211
Curto, J.D.; Pinto, J.C.; Tavares, G.N. 2007: Modeling stock markets' volatility using GARCH models with Normal, Student's t and stable Paretian distributions. Statistical Papers 50(2): 311-321
Xiao, D.; Wang, J. 2012: Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis. Physica A: Statistical Mechanics and its Applications 391(20): 4827-4838
Bianchi, S.; Pantanella, A.; Pianese, A. 2013: Modeling stock prices by multifractional Brownian motion: an improved estimation of the pointwise regularity. Quantitative Finance 13(8): 1317-1330
Bonan, G.B.; Williams, M.; Fisher, R.A.; Oleson, K.W. 2014: Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum. Geoscientific Model Development 7(5): 2193-2222
Kong, F.; Ban, Y.; Yin, H.; James, P.; Dronova, I. 2017: Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environmental Modelling-Software 95: 132-142
Kulagin, R.; Zhao, Y.; Beygelzimer, Y.; Toth, L.S.; Shtern, M. 2016: Modeling strain and density distributions during high-pressure torsion of pre-compacted powder materials. Materials Research Letters 5(3): 179-186
Wagner, M.H.; Kheirandish, S.; Koyama, K.; Nishioka, A.; Minegishi, A.; Takahashi, T. 2004: Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory. Rheologica Acta 44(3): 235-243
Qin, J.; Holmedal, B.; Zhang, K.; Hopperstad, O.S. 2017: Modeling strain-path changes in aluminum and steel. International Journal of Solids and Structures 117: 123-136
Cleophas, C.; Bartke, P. 2011: Modeling strategic customers using simulations - with examples from airline revenue management. Procedia - Social and Behavioral Sciences 20: 1060-1068
Lorenczik, S.; Malischek, R.; Trüby, J. 2017: Modeling strategic investment decisions in spatial markets. European Journal of Operational Research 256(2): 605-618
Wu, J.; Chien, C. 2008: Modeling strategic semiconductor assembly outsourcing decisions based on empirical settings. OR Spectrum 30(3): 401-430
Jukic, N. 2006: Modeling strategies and alternatives for data warehousing projects. Communications of the ACM 49(4): 83-88
Folt, B.; McGowan, C.P.; Steen, D.A.; Piccolomini, S.; Hoffman, M.; Godwin, J.C.; Guyer, C. 2019: Modeling strategies and evaluating success during repatriations of elusive and endangered species. Animal Conservation 23(3): 273-285
Wade-Jaimes, K.; Demir, K.; Qureshi, A. 2018: Modeling strategies enhanced by metacognitive tools in high school physics to support student conceptual trajectories and understanding of electricity. Science Education 102(4): 711-743
Murali, P.; Ordóñez, F.; Dessouky, M.M. 2016: Modeling strategies for effectively routing freight trains through complex networks. Transportation Research Part C: Emerging Technologies 70: 197-213
Cummings, W. K.; Bain, O. 2017: Modeling strategies for enhancing educational quality. Research in Comparative and International Education 12(2): 160-173
Hivet, G.; Wendling, A.; Vidal-Salle, E.; Laine, B.; Boisse, P. 2010: Modeling strategies for fabrics unit cell geometryapplication to permeability simulations. International Journal of Material Forming 3(S 1): 727-730
Medina, L.; Gilat, R.; Krylov, S. 2017: Modeling strategies of electrostatically actuated initially curved bistable micro plates. International Journal of Solids and Structures 118-119: 1-13
Sakurai, S. 2010: Modeling strategy for jointed rock masses reinforced by rock bolts in tunneling practice. Acta Geotechnica 5(2): 121-126
Ishii, M.; Sun, X.; Kim, S. 2003: Modeling strategy of the source and sink terms in the two-group interfacial area transport equation. Annals of Nuclear Energy 30(13): 1309-1331
Makse, H.A.; Cizeau, P.; Stanley, H. 1998: Modeling stratification in two-dimensional sandpiles. Physica A: Statistical Mechanics and its Applications 249(1-4): 391-396
Straub, C.; Kronenburg, A.; Stein, O.; Barlow, R.; Geyer, D. 2019: Modeling stratified flames with and without shear using multiple mapping conditioning. Proceedings of the Combustion Institute 37(2): 2317-2324
Yarovitskii, N.V.; Kostina, N.I. 1995: Modeling stratified populations: a demographic illustration. Cybernetics and Systems Analysis 31(2): 275-284
Kundu, S. 2019: Modeling stratified suspension concentration distribution in turbulent flow using fractional advection–diffusion equation. Environmental Fluid Mechanics 19(6): 1557-1574
Bayram, A.; Uzlu, E.; Kankal, M.; Dede, T. 2014: Modeling stream dissolved oxygen concentration using teaching–learning based optimization algorithm. Environmental Earth Sciences 73(10): 6565-6576
Duru, U.; Arabi, M.; Wohl, E.E. 2017: Modeling stream flow and sediment yield using the SWAT model: a case study of Ankara River basin, Turkey. Physical Geography 39(3): 264-289
Mukundan, R.; Acharya, N.; Gelda, R.K.; Frei, A.; Owens, E.M. 2019: Modeling streamflow sensitivity to climate change in new York City water supply streams using a stochastic weather generator. Journal of Hydrology: Regional Studies 21: 147-158
Longbiao, L. 2017: Modeling strength degradation of fiber-reinforced ceramic-matrix composites under cyclic loading at room and elevated temperatures. Materials Science and Engineering: A695: 221-229
Cevik, A. 2011: Modeling strength enhancement of FRP confined concrete cylinders using soft computing. Expert Systems with Applications 38(5): 5662-5673
Xiao, Y.; Zhang, Z.; Chen, L.; Zheng, K. 2018: Modeling stress path dependency of cyclic plastic strain accumulation of unbound granular materials under moving wheel loads. Materials-Design 137: 9-21
Muschietti, L.; Roth, I.; Carlson, C.W.; Berthomier, M. 2002: Modeling stretched solitary waves along magnetic field lines. Nonlinear Processes in Geophysics 9(2): 101-109
Moutsanidis, G.; Kamensky, D.; Zhang, D.Z.; Bazilevs, Y.; Long, C.C. 2019: Modeling strong discontinuities in the material point method using a single velocity field. Computer Methods in Applied Mechanics and Engineering 345: 584-601
von Flotow, A.H.; Miller, D.W.; Pines, D.J. 1988: Modeling structural acoustics for active control. Journal of the Acoustical Society of America 83(1): S6-S7
Kapetanios, G.; Tzavalis, E. 2010: Modeling structural breaks in economic relationships using large shocks. Journal of Economic Dynamics and Control 34(3): 417-436
Longhi, C.; Musolesi, A.; Baumont, C. 2014: Modeling structural change in the European metropolitan areas during the process of economic integration. Economic Modelling 37: 395-407
Hunter, H.; Bresnahan, T. F.; Rutan Iii, E. J. 1981: Modeling structural change using early Soviet data. Journal of Development Economics 9(1): 65-87
Frijns, B.; Lehnert, T.; Zwinkels, R.C. 2011: Modeling structural changes in the volatility process. Journal of Empirical Finance 18(3): 522-532
Rau, T. 2013: Modeling structural equations with endogenous regressors and heterogeneity through derivative constraints. Quantitative Economics 4(1): 125-148
Benner, P.; Lang, N.; Saak, J. 2013: Modeling structural variability in reduced order models of machine tool assembly groups via parametric MOR. PAMM 13(1): 481-482
Faeder, J.; Delaney, N.; Maslen, P.; Parson, R. 1998: Modeling structure and dynamics of solvated molecular ions: Photodissociation and recombination in I2−(CO2). Chemical Physics 239(1-3): 525-547
Skelton, R.E.; Hu, A. 1985: Modeling structures for control design. Computers-Structures 20(1-3): 303-309
Nie, Z.; Lin, Y.; Tong, Q. 2017: Modeling structures of open cell foams. Computational Materials Science 131: 160-169
Johnson, W.B.; Norton, J.E. 1992: Modeling student performance in diagnostic tasks: a decade of evolution. Educational Technology Research and Development 40(4): 81-94
Scherr, R.E. 2007: Modeling student thinking: An example from special relativity. American Journal of Physics 75(3): 272-280
Xu, J.; Yuan, R.; Xu, B.; Xu, M. 2016: Modeling students' interest in mathematics homework. The Journal of Educational Research 109(2): 148-158
Xu, J.; Yuan, R.; Xu, B.; Xu, M. 2014: Modeling students' time management in math homework. Learning and Individual Differences 34: 33-42
Kumar, M.; Tamilarasan, R. 2013: Modeling studies for the removal of methylene blue from aqueous solution using Acacia fumosa seed shell activated carbon. Journal of Environmental Chemical Engineering 1(4): 1108-1116
Burdige, D.J.; Komada, T.; Magen, C.; Chanton, J.P. 2016: Modeling studies of dissolved organic matter cycling in Santa Barbara Basin (CA, USA) sediments. Geochimica et Cosmochimica Acta 195: 100-119
Carrillo-Heian, E.M.; Graeve, O.A.; Feng, A.; Faghih, J.A.; Munir, Z.A. 1999: Modeling studies of the effect of thermal and electrical conductivities and relative density of field-activated self-propagating combustion synthesis. Journal of Materials Research 14(5): 1949-1958
De Haan, D.O.; Fløisand, I.; Stordal, F. 1997: Modeling studies of the effects of the heterogeneous reaction Cl OOCl + HCl → Cl2+ HOOCl on stratospheric chlorine activation and ozone depletion. Journal of Geophysical Research: Atmospheres 102(D 1): 1251-1258
Su, Y.Z.; Fukao, S.; Bailey, G.J. 1997: Modeling studies of the middle and upper atmosphere radar observations of the ionospheric Flayer. Journal of Geophysical Research: Space Physics 102(A 1): 319-327
Morey, S.L.; Bourassa, M.A.; Dukhovskoy, D.S.; O'Brien, J.J. 2006: Modeling studies of the upper ocean response to a tropical cyclone. Ocean Dynamics 56(5-6): 594-606
Zhu, L.; Hu, R.; Zhu, H.; Jiang, S.; Xu, Y.; Wang, N. 2018: Modeling studies of tidal dynamics and the associated responses to coastline changes in the Bohai Sea, China. Ocean Dynamics 68(12): 1625-1648
Hwang, D.G.; Chung, G.Y. 2012: Modeling studies on the effects of the process parameters in forced-flow chemical vapor infiltration reactor for the preparation of C/C composites. Korean Journal of Chemical Engineering 29(9): 1266-1271
Ercetin, O.; Ball, M.; Tassiulas, L. 2005: Modeling study for evaluation of aeronautical broadband data requirements over satellite networks. IEEE Transactions on Aerospace and Electronic Systems 41(1): 361-370
Bolognese, M.; Viesi, D.; Bartali, R.; Crema, L. 2020: Modeling study for low-carbon industrial processes integrating solar thermal technologies. a case study in the Italian Alps: the Felicetti Pasta Factory. Solar Energy 208: 548-558
Shi, L.; Gao, J.; Chen, J. 2014: Modeling study for oscillatory reaction of chlorite – iodide – ethyl acetoacetate. Canadian Journal of Chemistry 92(5): 417-425
Creaser, D.; Karatzas, X.; Lundberg, B.; Pettersson, L.J.; Dawody, J. 2011: Modeling study of 5k We-scale autothermal diesel fuel reformer. Applied Catalysis A: General 404(1-2): 129-140
Li, H.; Lin, L.; Lu, C.; Reed, C.W.; Shak, A.T. 2015: Modeling study of Dana Point Harbor, California: littoral sediment transport around a semi-permeable breakwater. Journal of Ocean Engineering and Marine Energy 1(2): 181-192
Su, X.; Zhang, W.; Qing, W.; Xu, Z.; Zhang, H. 2016: Modeling study of a pervaporation membrane reactor for improving oxime hydrolysis reaction. Journal of Membrane Science 497: 410-420
Zavodinsky, V.G.; Kabaldin, Y.G. 2018: Modeling study of adhesion in the Ti N/Ti, Ti N/Zr N, Ti N/Ti/Zr N, and Ti N/Zr/Zr N layered systems. The Journal of Adhesion 96(7): 633-646
Zhang, Y.; Wilkinson, D.P.; Taghipour, F. 2021: Modeling study of an air‐breathing micro direct methanol fuel cell with an extended anode catalyst region. International Journal of Energy Research 45(6): 9083-9098
Kozlov, V.; Chechet, I.; Matveev, S.; Titova, N.; Starik, A. 2016: Modeling study of combustion and pollutant formation in HCCi engine operating on hydrogen rich fuel blends. International Journal of Hydrogen Energy 41(5): 3689-3700
King, M.K. 1994: Modeling study of effects of temperature profiling on CVi processing of woven graphite preforms with dimethyldichlorosilane. Journal of Materials Research 9(8): 2174-2189
Maruyama, T. 1996: Modeling study of equatorial ionospheric height and spread Foccurrence. Journal of Geophysical Research: Space Physics 101(A 3): 5157-5163
Lebedev, A.; Secundov, A.; Starik, A.; Titova, N.; Schepin, A. 2009: Modeling study of gas-turbine combustor emission. Proceedings of the Combustion Institute 32(2): 2941-2947
Han, X.; Zhu, L.; Wang, S.; Meng, X.; Zhang, M.; Hu, J. 2018: Modeling study of impacts on surface ozone of regional transport and emissions reductions over North China Plain in summer 2015. Atmospheric Chemistry and Physics 18(16): 12207-12221
Loven, J.; Guo, Y.; Sin, K.; Judy, J.; Jian-Gang Zhu, 1994: Modeling study of isolated read-back pulses from keepered longitudinal thin film media using the boundary element method. IEEE Transactions on Magnetics 30(6): 4275-4277
Yue, Z.; Xu, H.; Yuan, G.; Pang, H. 2019: Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: a case study in graphene field. Physica A: Statistical Mechanics and its Applications 524: 375-391
Le, H.; Liu, L.; Chen, Y.; Zhang, H.; Wan, W. 2014: Modeling study of nighttime enhancements in F region electron density at low latitudes. Journal of Geophysical Research: Space Physics 119(8): 6648-6656
Reppert, M.; Naibo, V.; Jankowiak, R. 2010: Modeling study of non-line-narrowed hole-burned spectra in weakly coupled dimers and multi-chromophoric molecular assemblies. Chemical Physics 367(1): 27-35
Wang, Z.; Luo, X. 2017: Modeling study of nonlinear dynamic soft sensors and robust parameter identification using swarm intelligent optimization CS-NLJ. Journal of Process Control 58: 33-45
Jin, Y.; Meng, X.; Yang, N.; Meng, B.; Sunarso, J.; Liu, S. 2017: Modeling study of oxygen permeation through an electronically short‐circuited YSZ‐based asymmetric hollow fiber membrane. AIChE Journal 63(8): 3491-3500
An, H.; Yang, W.; Li, J.; Zhou, D. 2015: Modeling study of oxygenated fuels on diesel combustion: Effects of oxygen concentration, cetane number and C/H ratio. Energy Conversion and Management 90: 261-271
Shen, Y.; Wang, J.; Zheng, B.; Zhen, H.; Feng, Y.; Wang, Z.; Yang, X. 2010: Modeling study of residence time and water age in Dahuofang Reservoir in China. Science China Physics, Mechanics and Astronomy 54(1): 127-142
Shi, B.; Tu, C. 1998: Modeling study of silicon incorporation from Si Br4 in Ga as layers grown by chemical beam epitaxy. Journal of Crystal Growth 195(1-4): 740-745
Chen, H.; Li, J.; Ge, B.; Yang, W.; Wang, Z.; Huang, S.; Wang, Y.; Yan, P.; Li, J.; Zhu, L. 2015: Modeling study of source contributions and emergency control effects during a severe haze episode over the Beijing-Tianjin-Hebei area. Science China Chemistry 58(9): 1403-1415
Li, J.; Yang, W.; Wang, Z.; Chen, H.; Hu, B.; Li, J.; Sun, Y.; Fu, P.; Zhang, Y. 2016: Modeling study of surface ozone source-receptor relationships in East Asia. Atmospheric Research 167: 77-88
Rao, J.; Ren, R. 2020: Modeling study of the destructive interference between the tropical Indian Ocean and eastern Pacific in their forcing in the southern winter extratropical stratosphere during ENSO. Climate Dynamics 54(3-4): 2249-2266
Lamotte, C.; Guth, J.; Marécal, V.; Cussac, M.; Hamer, P.D.; Theys, N.; Schneider, P. 2021: Modeling study of the impact of SO2 volcanic passive emissions on the tropospheric sulfur budget. Atmospheric Chemistry and Physics 21(14): 11379-11404
Fan, X.; Gu, Y.; Liou, K.; Lee, W.; Zhao, B.; Chen, H.; Lu, D. 2019: Modeling study of the impact of complex terrain on the surface energy and hydrology over the Tibetan Plateau. Climate Dynamics 53(11): 6919-6932
Khoshsima, A.; Shahriari, R. 2017: Modeling study of the phase behavior of mixtures containing non-ionic glycol ether surfactant. Journal of Molecular Liquids 230: 529-541
Sverdrup, G.; Hov, . 1984: Modeling study of the potential importance of heterogeneous surface reactions for NOx transformations in plumes. Atmospheric Environment (1967) 18(12): 2753-2760
Li, C.; Wu, B.; Chen, T. 2005: Modeling study of the surface tension and gravitational effects on flow injection in center-gated disks. International Journal of Advanced Manufacturing Technology 28(11-12): 1104-1110
Yang, N.; Henson, W.; Hauser, J.; Wortman, J. 1999: Modeling study of ultrathin gate oxides using direct tunneling current and capacitance-voltage measurements in MOS devices. IEEE Transactions on Electron Devices 46(7): 1464-1471
Borhani, T.N.G.; Afkhamipour, M.; Azarpour, A.; Akbari, V.; Emadi, S.H.; Manan, Z.A. 2016: Modeling study on CO 2 and H 2 S simultaneous removal using MDEA solution. Journal of Industrial and Engineering Chemistry 34: 344-355
Poljak, M.; Jovanović, V.; Suligoj, T. 2011: Modeling study on carrier mobility in ultra-thin body Fin FETs with circuit-level implications. Solid-State Electronics 65-66: 130-138
Ma, Q.; Qi, J.; Chen, G.; Sun, C. 2016: Modeling study on phase equilibria of semiclathrate hydrates of pure gases and gas mixtures in aqueous solutions of TBAB and TBAF. Fluid Phase Equilibria 430: 178-187
Jian-hua, Z.; Li-ying, W.; Fu-qiang, T.; Yan, Z.; Zhi, W. 2015: Modeling study on surface roughness of ultrasonic-assisted micro end grinding of silica glass. International Journal of Advanced Manufacturing Technology 86(1-4): 407-418
Yang, W.; Ma, Z.; Sun, W. 2016: Modeling study on the catalytic activities of 2-imino-1,10-phenanthrolinylmetal (Fe, Co, and Ni) precatalysts in ethylene oligomerization. RSC Advances 6(83): 79335-79342
Yu, B.; Yuan, P.; Shen, E. 2017: Modeling study on the circuit model of AC plasma anemometer. Measurement 112: 80-87
Zhang, F.; Zhang, J.; Wang, Y. 2007: Modeling study on the combustion of intumescent fire-retardant polypropylene. Express Polymer Letters 1(3): 157-165
Li, J.; Yang, W.; Zhou, D. 2016: Modeling study on the effect of piston bowl geometries in a gasoline/biodiesel fueled RCCi engine at high speed. Energy Conversion and Management 112: 359-368
Jiang, N.; Wang, C.; Pan, H.; Yin, D.; Ma, J. 2020: Modeling study on the influence of the strip filling mining sequence on mining‐induced failure. Energy Science-Engineering 8(6): 2239-2255
Inoue, K.; Tonokura, K.; Yamada, H. 2019: Modeling study on the spatial variation of the sensitivity of photochemical ozone concentrations and population exposure to VOC emission reductions in Japan. Air Quality, Atmosphere-Health 12(9): 1035-1047
Chang, H.; Duan, C.; Wen, K.; Liu, Y.; Xiang, C.; Wan, Z.; He, S.; Jing, C.; Shu, S. 2015: Modeling study on the thermal performance of a modified cavity receiver with glass window and secondary reflector. Energy Conversion and Management 106: 1362-1369
Liu, Y.; Sato, Y.; Jia, R.; Xie, Y.; Huang, J.; Nakajima, T. 2015: Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmospheric Chemistry and Physics 15(21): 12581-12594
Kanno, H.; Shikazono, N. 2017: Modeling study on two-phase adiabatic expansion in a reciprocating expander. International Journal of Heat and Mass Transfer 104: 142-148
Krivoruchenko, M.; Alessio, E.; Frappietro, V.; Streckert, L. 2004: Modeling stylized facts for financial time series. Physica A: Statistical Mechanics and its Applications 344(1-2): 263-266
Webster, C.; Rutter, N.; Zahner, F.; Jonas, T. 2016: Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures. Journal of Geophysical Research: Atmospheres 121(3): 1220-1235
Monsalve-Jaramillo, H.; Valencia-Mina, W.; Cano-Saldaña, L.; Vargas, C.A. 2018: Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves. Journal of Geodynamics 116: 47-61
Berger, L.; Wick, A.; Attili, A.; Mueller, M.E.; Pitsch, H. 2021: Modeling subfilter soot-turbulence interactions in Large Eddy Simulation: An a priori study. Proceedings of the Combustion Institute 38(2): 2783-2790
Gilkey, R.H.; Meyer, T.A. 1987: Modeling subject responses in a reproducible noise masking task. Journal of the Acoustical Society of America 82(1): S92-S93
Busch, J.; Cruse, A.; Marquardt, W. 2007: Modeling submerged hollow-fiber membrane filtration for wastewater treatment. Journal of Membrane Science 288(1-2): 94-111
Fardi, H.; Hayes, R. 1992: Modeling submicrometer Ga as MESFETs using PISCES with an apparent gate-length-dependent velocity-field relation. IEEE Transactions on Electron Devices 39(7): 1778-1780
Menchón, S.; Ramos, R.; Condat, C. 2007: Modeling subspecies and the tumor-immune system interaction: Steps toward understanding Therapy. Physica A: Statistical Mechanics and its Applications 386(2): 713-719
Proks, V. 2005: Modeling substituent dependence of the twist and shielding in a series of N-[4-(nitro)benzylidene]anilines with an inclusion of solvent effects. Journal of Molecular Structure: THEOCHEM 725(1-3): 69-73
Pfost, M.; Rein, H.; Holzwarth, T. 1996: Modeling substrate effects in the design of high-speed Si-bipolar ICs. IEEE Journal of Solid-State Circuits 31(10): 1493-1501
Kang, S.H.; Cho, H.; Yoon, S. 2009: Modeling sudden volatility changes: Evidence from Japanese and Korean stock markets. Physica A: Statistical Mechanics and its Applications 388(17): 3543-3550
Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J. 2014: Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values. Geoscientific Model Development 7(3): 1225-1245
Elmore, R. 2020: Modeling sums of exchangeable binary variables. Communications in Statistics - Theory and Methods: 1-26
Beleggia, M.; Pozzi, G.; Tonomura, A. 2004: Modeling superconducting vortices in high-Tc materials for TEM observations. Journal of Magnetism and Magnetic Materials: 272-276: E143-E144
Boros, P.; Fehér, O.; Lakner, Z.; Niroomand, S.; Vizvári, B. 2015: Modeling supermarket re-layout from the owner's perspective. Annals of Operations Research 238(1-2): 27-40
Reese, C.S.; Spencer, B.S.; Ball, E.L. 2015: Modeling supernovae light curves: An application of hierarchical smoothing splines. Statistical Analysis and Data Mining: The ASA Data Science Journal 8(5-6): 302-313
Turnage, A. 2003: Modeling supernovae: Braving a bold new frontier. IEEE Computer Graphics and Applications 23(6): 6-11
Hernadi, K.; Méhn, D.; Labádi, I.; Pálinkó, I.; Sitkei, E.; Kiricsi, I. 2002: Modeling superoxide dismutase: Immobilizing a Cu−Zn complex in porous matrices and activity testing in H2O2 decomposition. Studies in Surface Science and Catalysis: 85-92
Paynter, G.C.; Treiber, D.A.; Kneeling, W.D. 1993: Modeling supersonic inlet boundary-layer bleed roughness. Journal of Propulsion and Power 9(4): 622-627
Talpallikar, M.V.; Nelson, H.F. 1990: Modeling supersonic missile fin-body interference for preliminary design. Journal of Spacecraft and Rockets 27(6): 571-576
Durango-Cohen, E.J.; Li, C. 2017: Modeling supplier capacity allocation decisions. International Journal of Production Economics 184: 256-272
Farooq, S.; Karimi, I. 2001: Modeling support resistance in zeolite membranes. Journal of Membrane Science 186(1): 109-121
Li, X.; Dong, Y.; Peers, P.; Tong, X. 2017: Modeling surface appearance from a single photograph using self-augmented convolutional neural networks. ACM Transactions on Graphics 36(4): 1-11
Bilgili, E.; Coskuner, K.A.; Usta, Y.; Goltas, M. 2018: Modeling surface fuels moisture content in Pinus brutia stands. Journal of Forestry Research 30(2): 577-587
Stout, P.J. 1998: Modeling surface kinetics and morphology during 3C, 2H, 4H, and 6H–Si C (111) step-flow growth. Journal of Vacuum Science-Technology A: Vacuum, Surfaces, and Films 16(6): 3314-3327
Kochukhov, O. 2013: Modeling surface magnetic fields in stars with radiative envelopes. Proceedings of the International Astronomical Union 9(S 302): 290-299
Trummer, G.; Marte, C.; Dietmaier, P.; Sommitsch, C.; Six, K. 2016: Modeling surface rolling contact fatigue crack initiation taking severe plastic shear deformation into account. Wear 352-353: 136-145
Belem, T.; Souley, M.; Homand, F. 2007: Modeling surface roughness degradation of rock joint wall during monotonic and cyclic shearing. Acta Geotechnica 2(4): 227-248
Khosharay, S.; Tourang, S.; Tajfar, F. 2017: Modeling surface tension and interface of (water+methanol), (water+ethanol), (water+1-propanol), and (water+MEG) mixtures. Fluid Phase Equilibria 454: 99-110
Jibben, Z.; Velechovsky, J.; Masser, T.; Francois, M. 2019: Modeling surface tension in compressible flow on an adaptively refined mesh. Computers-Mathematics with Applications 78(2): 504-516
Kim, S.; Wang, W.; Kang, Y. 2015: Modeling surface tension of multicomponent liquid steel using Modified Quasichemical Model and Constrained Gibbs Energy Minimization. Metals and Materials International 21(4): 765-774
Nabipour, M.; Keshavarz, P. 2017: Modeling surface tension of pure refrigerants using feed-forward back-propagation neural networks. International Journal of Refrigeration 75: 217-227
Yang, J.; McMillan, H.; Zammit, C. 2016: Modeling surface water-groundwater interaction in new Zealand: Model development and application. Hydrological Processes 31(4): 925-934
Romero-Flores, M.; García-Cuéllar, A.J.; Montesinos-Castellanos, A.; Lopez-Salinas, J.L. 2018: Modeling surfactant adsorption/retention and transport through porous media. Chemical Engineering Science 183: 190-199
Hally-Rosendahl, K.; Feddersen, F. 2016: Modeling surfzone to inner-shelf tracer exchange. Journal of Geophysical Research: Oceans 121(6): 4007-4025
Barth, E.L. 2017: Modeling survey of ices in Titan's stratosphere. Planetary and Space Science 137: 20-31
Biondo, A.; Pluchino, A.; Rapisarda, A. 2018: Modeling surveys effects in political competitions. Physica A: Statistical Mechanics and its Applications 503: 714-726
Tran, M. 2014: Modeling sustainability transitions on complex networks. Complexity 19(5): 8-22
Liu, H.; Yu, D.; Mao, D.; Geng, Y.; Wang, W. 2016: Modeling swelling and absorption dynamics for holographic sensing in analytes sensitive photopolymer. Optics Communications 368: 95-104
Sartore, L.; Wei, Y.; Abayomi, E.; Riggins, S.; Corral, G.; Bejleri, V.; Spiegelman, C. 2020: Modeling swine population dynamics at a finer temporal resolution. Applied Stochastic Models in Business and Industry 36(6): 1060-1079
Yukalov, V.; Yukalova, E.; Sornette, D. 2012: Modeling symbiosis by interactions through species carrying capacities. Physica D: Nonlinear Phenomena 241(15): 1270-1289
Vichaya, E.; Cook, J.; Frazier, M.; Young, E.; Meagher, M. 2010: Modeling symptoms of chemotherapy: Bortezomib and 5-fluorouracil induce sickness in mice. Brain, Behavior, and Immunity 24: S60-S61
Ajvad, M.; Shih, H. 2020: Modeling syngas combustion performance of a can combustor with rotating casing for an innovative micro gas turbine. International Journal of Hydrogen Energy 45(55): 31188-31201
Barber Janer, A.; Vonck, E.; Baekelandt, V. 2021: Modeling synucleinopathies in rodents. International Review of Movement Disorders: 65-154
Sharma, R.K.; Kumar, D.; Kumar, P. 2007: Modeling system behavior for risk and reliability analysis using KBARM. Quality and Reliability Engineering International 23(8): 973-998
Chen, H.; Zhou, P. 2019: Modeling systematic technology adoption: can one calibrated representative agent represent heterogeneous agents?. Omega 89: 257-270
Mensi, W.; Hammoudeh, S.; Shahzad, S.J.H.; Shahbaz, M. 2017: Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method. Journal of Banking-Finance 75: 258-279
Bianchi, D.; Billio, M.; Casarin, R.; Guidolin, M. 2019: Modeling systemic risk with Markov Switching Graphical SUR models. Journal of Econometrics 210(1): 58-74
Padmore, T.; Schuetze, H.; Gibson, H. 1998: Modeling systems of innovation: An enterprise-centered view. Research Policy 26(6): 605-624
Tsivintzelis, I.; Ali, S.; Kontogeorgis, G.M. 2016: Modeling systems relevant to the biodiesel production using the CPA equation of state. Fluid Phase Equilibria 430: 75-92
Sherif, Y.; Kheir, N. 1982: Modeling systems with high early failure occurrence patterns. Microelectronics Reliability 22(2): 147-149
Eryilmaz, S. 2018: Modeling systems with two dependent components under bivariate shock models. Communications in Statistics - Simulation and Computation 48(6): 1714-1728
Auray, S.; Eyquem, A.; Jouneau-Sion, F. 2014: Modeling tails of aggregate economic processes in a stochastic growth model. Computational Statistics-Data Analysis 76: 76-94
Chen, J.; Zhang, J.; Hong, J.; Zhu, L. 2019: Modeling tangential contact of lap joints considering surface topography based on Iwan model. Tribology International 137: 66-75
Silwal, R.; Baral, S.K.; Chhetri, B.B.K. 2018: Modeling taper and volume of Sal (Shorea robusta Gaertn. f.) trees in the western Terai region of Nepal. Banko Janakari: 76-83
Strijckmans, K.; Depla, D. 2015: Modeling target erosion during reactive sputtering. Applied Surface Science 331: 185-192
Houben, F.; Igna, G.; Vaandrager, F. 2012: Modeling task systems using parameterized partial orders. International Journal on Software Tools for Technology Transfer 15(3): 269-286
Zembylas, M.; Papanastasiou, E.C. 2005: Modeling teacher empowerment: the role of job satisfaction. Educational Research and Evaluation 11(5): 433-459
Lai, C. 2015: Modeling teachers' influence on learners' self-directed use of technology for language learning outside the classroom. Computers-Education 82: 74-83
Kokkelenberg, E.C.; van Nguyen, S. 1989: Modeling technical progress and total factor productivity: a plant level example. Journal of Productivity Analysis 1(1): 21-42
Éles, A.; Heckl, I.; Cabezas, H. 2020: Modeling technique in the P-Graph framework for operating units with flexible input ratios. Central European Journal of Operations Research 29(2): 463-489
Giacofci, T. 1981: Modeling techniques for adina analysis of stiffened shell structures. Computers-Structures 13(5-6): 601-605
Wilson, A.W.; Motter, C.J.; Phillips, A.R.; Dolan, J.D. 2019: Modeling techniques for post-tensioned cross-laminated timber rocking walls. Engineering Structures 195: 299-308
Kersting, P.; Biermann, D. 2014: Modeling techniques for simulating workpiece deflections in NC milling. CIRP Journal of Manufacturing Science and Technology 7(1): 48-54
Lerner, E.J. 1981: Modeling techniques: a repetitive cycle of modeling, testing, and redesign through final production specifications is crucial to eliminating a system's weak links. IEEE Spectrum 18(10): 50-54
Karali, N.; Park, W.Y.; McNeil, M. 2017: Modeling technological change and its impact on energy savings in the U.S. iron and steel sector. Applied Energy 202: 447-458
Honarparvar, S.; Zhang, X.; Chen, T.; Na, C.; Reible, D. 2019: Modeling technologies for desalination of brackish water - toward a sustainable water supply. Current Opinion in Chemical Engineering 26: 104-111
Faÿ, G.; González-Arévalo, B.; Mikosch, T.; Samorodnitsky, G. 2006: Modeling teletraffic arrivals by a Poisson cluster process. Queueing Systems 54(2): 121-140
Sánchez-Palencia, P.; Martín-Chivelet, N.; Chenlo, F. 2019: Modeling temperature and thermal transmittance of building integrated photovoltaic modules. Solar Energy 184: 153-161