Home
  >  
Section 88

EurekaMag Full Text Articles Chapter 87,888



References:

Cadogan, J.; Pérez, S.M.; Cobas, R.; Ryan, D.; Lora-Serrano, R.; Figueira, M.; Yokaichiya, F. 2014: Structural transformations in R3Cu4Sn4 (R = Ho, Er, Tm) intermetallic compounds. Intermetallics 55: 123-128
Kuptsov, K.; Kiryukhantsev-Korneev, P.; Sheveyko, A.; Shtansky, D. 2015: Structural transformations in Ti Al Si CN coatings in the temperature range 900–1600 °C. Acta Materialia 83: 408-418
Bethune, B. 1969: Structural transformations in U3Si. Journal of Nuclear Materials 31(2): 197-202
Georgobiani, A.N.; Ilyuhina, Z.P.; Tiginyanu, I.M. 1982: Structural transformations in Zn S single crystals implanted by indium ions. Radiation Effects 62(3-4): 193-195
Krylov, A.S.; Vtyurin, A.N.; Oreshonkov, A.S.; Voronov, V.N.; Krylova, S.N. 2013: Structural transformations in a single-crystal Rb2 Na YF6 : Raman scattering study. Journal of Raman Spectroscopy 44(5): 763-769
Stoycheva-Topalova, R.; Assa, J.; Buroff, A.; Tzvetkov, T.; Necheva, S.; Drandarov, N.; Vichev, R. 1998: Structural transformations in a-As2S3 under Au+ ions irradiation. Vacuum 51(2): 277-279
Randhawa, H.S.; Malhotra, L.K.; Sehgal, H.K.; Chopra, K.L. 1976: Structural transformations in a-Ge alloy films. Physica Status Solidi (a) 37(1): 313-320
Janz, S.; Pedersen, K.; van Driel, H.M.; Timsit, R.S. 1991: Structural transformations in adsorbed oxygen layers on Al surfaces observed using optical second‐harmonic generation. Journal of Vacuum Science-Technology A: Vacuum, Surfaces, and Films 9(3): 1506-1510
Górecki, C. 1981: Structural transformations in amorphous solids detected by the exoelectron emission technique. Journal of Non-Crystalline Solids 45(1): 63-67
Pogorelov, V.; Chernolevska, Y.; Vaskivskyi, Y.; Pettersson, L.G.; Doroshenko, I.; Sablinskas, V.; Balevicius, V.; Ceponkus, J.; Kovaleva, K.; Malevich, A.; Pitsevich, G. 2016: Structural transformations in bulk and matrix-isolated methanol from measured and computed infrared spectroscopy. Journal of Molecular Liquids 216: 53-58
Tasinkevych, M.; Ciach, A. 2001: Structural transformations in confined lamellar phases in oil–water–surfactant mixtures. The Journal of Chemical Physics 115(18): 8705-8713
Rehman, Z.; Janulewicz, K. 2016: Structural transformations in femtosecond laser-processed n-type 4H-Si C. Applied Surface Science 385: 1-8
Sharma, A.; Mohan, S.; Suwas, S. 2016: Structural transformations in highly oriented seven modulated martensite Ni–Mn–Ga thin films on an Al2O3 substrate. Journal of Materials Research 31(19): 3016-3026
Ievlev, V.M.; Barinov, S.M.; Komlev, V.S.; Fedotov, A.Y.; Kostyuchenko, A.V.; Kilmametov, A.R.; Rau, J.V.; Dobatkin, S.V. 2015: Structural transformations in hydroxyapatite ceramics as a result of severe plastic deformation. Ceramics International 41(9): 10526-10530
de Rességuier, T.; Berterretche, P.; Hallouin, M.; Petitet, J.P. 2003: Structural transformations in laser shock-loaded quartz. Journal of Applied Physics 94(3): 2123-2129
Turos, A.; Falcone, R.; Drigo, A.; Sambo, A.; Nowicki, L.; Madi, N.; Jagielski, J.; Matzke, H. 1996: Structural transformations in leached uranium dioxide. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 118(1-4): 659-662
Häggström, L.; Ionica, C.M.; Jumas, J.C.; Aldon, L.; Lippens, P.E.; Edström, K. 2006: Structural transformations in lithiated Mn2Sb electrodes probed by Mössbauer spectroscopy and X-ray diffraction. Hyperfine Interactions 167(1-3): 759-765
Vasyukov, D A.; Baidakova, M V.; Chaldyshev, V V.; Suvorova, A A.; Preobrazhenskii, V V.; Putyato, M A.; Semyagin, B R. 2001: Structural transformations in low-temperature grown Ga As:Sb. Journal of Physics D: Applied Physics 34(10A): A15-A18
Anufrieva, E.V.; Krakovyak, M.G.; Nekrasova, T.N.; Smyslov, R.Y.; Nazarova, O.V.; Panarin, E.F. 2007: Structural transformations in macromolecules of synthetic nonionogenic polymers and DNA in salt-containing aqueous solutions. Polymer Science Series A 49(2): 211-216
Bulaev, A.M.; Vedeneev, S.V.; Buchatskii, L.M.; Gal'chenko, Y.A. 1990: Structural transformations in multicomponent system during heterogeneous combustion. Combustion, Explosion, and Shock Waves 26(2): 198-201
Romanov, A.E.; Vikarchuk, A.A.; Kolesnikova, A.L.; Dorogin, L.M.; Kink, I.; Aifantis, E.C. 2011: Structural transformations in nano- and microobjects triggered by disclinations. Journal of Materials Research 27(3): 545-551
Orendorz, A.; Brodyanski, A.; Lösch, J.; Bai, L.; Chen, Z.; Le, Y.; Ziegler, C.; Gnaser, H. 2006: Structural transformations in nanocrystalline anatase Ti O2 films upon annealing in air. Surface Science 600(18): 4347-4351
Indelicato, G.; Keef, T.; Cermelli, P.; Salthouse, D.G.; Twarock, R.; Zanzotto, G. 2012: Structural transformations in quasicrystals induced by higher dimensional lattice transitions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468(2141): 1452-1471
Gallagher, M.C.; Fyfield, M.S.; Joyce, S.A. 1999: Structural transformations in the Stranski-Krastanov growth of Mg on Mo(001). Physical Review B 59(3): 2346-2351
Pinto, R. 1971: Structural transformations in the chalcogenide systems GeAsTe and GeAsSe. Journal of Non-Crystalline Solids 6(3): 187-196
Baidakova, M.V.; Bert, N.A.; Chaldyshev, V.; Nevedomsky, V.N.; Yagovkina, M.A.; Preobrazhenskii, V.V.; Putyato, M.A.; Semyagin, B.R. 2013: Structural transformations in the low-temperature grown Ga as with superlattices of Sb and P δ-layers. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 69(1): 30-35
Bottomley, D.J.; van Driel, H.M.; Timsit, R.S. 1993: Structural transformations in thin oxide layers on the (211) surface of an Al–Li alloy. Journal of Vacuum Science-Technology A: Vacuum, Surfaces, and Films 11(4): 2193-2199
Bîrjega, M.; Popescu-Pogrion, N.; Sârbu, C.; Teodorescu, I. 1979: Structural transformations induced during the annealing of thin Ni-Cr films. Thin Solid Films 57(2): 337-341
Meitzler, A.H. 1976: Structural transformations occasioned by crystallographic shear in PLZT and Ti O2 ceramics. Ferroelectrics 11(1): 503-510
Ogruc Ildiz, G.; Konarska, J.; Fausto, R. 2018: Structural transformations of 3-fluoro and 3-fluoro-4-methoxy benzaldehydes under cryogenic conditions: a computational and low temperature infrared spectroscopy investigation. Chemical Physics 508: 7-19
Chen, X.L.; Liang, J.K.; Liu, Y.; Lan, Y.C.; Zhang, Y.L.; Ma, Y.; Che, G.C.; Liu, G.D.; Xing, X.Y.; Qiao, X.Y. 1999: Structural transformations of Bi2Cu O4 induced by mechanical deformation. Journal of Applied Physics 85(6): 3155-3158
Friedrich, I.; Weidenhof, V.; Njoroge, W.; Franz, P.; Wuttig, M. 2000: Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements. Journal of Applied Physics 87(9): 4130-4134
Rishina, L.A.; Shibryaeva, L.S.; Gilman, A.B.; Bessonova, N.P.; Ladygina, T.A.; Shashkin, D.P. 2001: Structural transformations of anisotactic polypropylene submitted to low-frequency plasma treatment. Polimery 46(03): 173-177
Ivashchenko, O.V.; Trenikhin, M.V.; Kryazhev, Y.G.; Tolochko, B.P.; Eliseev, V.S.; Arbuzov, A.B.; Drozdov, V.A.; Likholobov, V.A. 2015: Structural transformations of carbon black by high-energy laser and electron irradiation. Nanotechnologies in Russia 10(9-10): 696-700
Li, W.; Xu, S.; Chen, X.; Xu, C. 2021: Structural transformations of carboxyl acids networks induced by concentration and oriented external electric field. Chinese Chemical Letters 32(1): 480-484
Gavrilov, M.Z. 1981: Structural transformations of cellulose hydrate during heat treatment in the presence of aluminum chloride. Journal of Applied Spectroscopy 35(3): 1001-1004
Hashimoto, H.; Fujii, T.; Kohara, S.; Nakanishi, K.; Yogi, C.; Peterlik, H.; Nakanishi, M.; Takada, J. 2015: Structural transformations of heat-treated bacterial iron oxide. Materials Chemistry and Physics 155: 67-75
Manukyan, K.V.; Yeghishyan, A.V.; Danghyan, V.; Rouvimov, S.; Mukasyan, A.S.; Wolf, E.E. 2018: Structural transformations of highly porous nickel catalysts during ethanol conversion towards hydrogen. International Journal of Hydrogen Energy 43(29): 13225-13236
Brovchenko, I.V. 1995: Structural transformations of impurity centers in naphthalene crystals. The Journal of Chemical Physics 102(15): 5942-5951
Dlugunovich, V.A.; Zhbankov, R.G.; Zhdanovskii, V.A.; Zagorskaya, S.A.; Firsov, S.P. 2006: Structural transformations of polysaccharides exposed to CO2-laser radiation. Journal of Applied Spectroscopy 73(2): 178-184
Kirdyashkin, A.I.; Lepakova, O.K.; Maksimov, Y.M.; Pak, A.T. 1989: Structural transformations of powder mixture components in a gasless combustion wave. Combustion, Explosion, and Shock Waves 25(6): 718-723
Kalinkin, A.M.; Kalinkina, E.V.; Makarova, T.I. 2006: Structural transformations of silicates upon prolonged grinding. Russian Journal of General Chemistry 76(4): 523-528
Saranin, A.; Numata, T.; Kubo, O.; Katayama, M.; Oura, K. 1997: Structural transformations of the Si(111)2 × 2-in surface induced by STM tip and thermal annealing. Applied Surface Science 121-122: 183-186
Guo, Y.; Zhou, J.; Wen, J.; Sun, G.; Sun, Y. 2015: Structural transformations of triploid of Populus tomentosa Carr. lignin during auto-catalyzed ethanol organosolv pretreatment. Industrial Crops and Products 76: 522-529
Lauberts, M.; Lauberte, L.; Arshanitsa, A.; Dizhbite, T.; Dobele, G.; Bikovens, O.; Telysheva, G. 2018: Structural transformations of wood and cereal biomass components induced by microwave assisted torrefaction with emphasis on extractable value chemicals obtaining. Journal of Analytical and Applied Pyrolysis 134: 1-11
Andryushechkin, B.V.; Shevlyuga, V.M.; Pavlova, T.V.; Zhidomirov, G.M.; Eltsov, K.N. 2017: Structural transformations on an oxidized Ag(111) surface. JETP Letters 105(5): 292-296
Bernholc, J.; Brabec, C.; Maiti, A.; Yi, J. 1994: Structural transformations, reactions, and electronic properties of fullerenes, onions, and buckytubes. Computational Materials Science 2(3-4): 547-556
Cichy, K.; Skubida, W.; Świerczek, K. 2018: Structural transformations, water incorporation and transport properties of tin-substituted barium indate. Journal of Solid State Chemistry 262: 58-67
Liu, G.; Rao, G.; Feng, X.; Yang, H.; Ouyang, Z.; Liu, W.; Liang, J. 2003: Structural transition and atomic ordering in the non-stoichiometric double perovskite Sr2Fex Mo2−x O6. Journal of Alloys and Compounds 353(1-2): 42-47
Tian, B.; Chen, F.; Liu, Y.; Zheng, Y. 2008: Structural transition and atomic ordering of Ni49.8Mn28.5Ga21.7 ferromagnetic shape memory alloy powders prepared by ball milling. Materials Letters 62(17-18): 2851-2854
Raich, J.; Bernstein, E.; Yoshihara, A. 1981: Structural transition and elastic anomalies in s-TRIAZINE, C3N3H3. Chemical Physics Letters 82(1): 138-142
Malik, R.A.; Hussain, A.; Rahman, J.U.; Maqbool, A.; Song, T.; Kim, W.; Ryou, S.; Kim, M. 2015: Structural transition and giant strain induced by A- and B-site concurrent donor doping in Bi0.5(Na0.84K0.16)0.5Ti O3–Sr Ti O3 ceramics. Materials Letters 143: 148-150
Li, J.; Kong, L.; Liu, B. 2004: Structural transition and glass-forming ability of the Ni–Hf system studied by molecular dynamics simulation. Journal of Materials Research 19(12): 3547-3555
Li, Y.; Zhou, S.; Zhu, L.; Wang, Y. 2018: Structural transition and its effect on magnetoelectric coupling in the Bi Fe1−Mn O3 ceramics prepared by sol–gel method. Journal of Magnetism and Magnetic Materials 465: 784-788
Lu, Q.; Zhu, L.; Ma, L.; Wang, G. 2006: Structural transition and magnetic properties of clusters. Physics Letters A 350(3-4): 258-262
Yang, P.; Song, C.; Zeng, F.; Pan, F. 2008: Structural transition and magnetic properties of evaporated Fe/Gd multilayers. Rare Metals 27(5): 484-489
Cheng, D.; Cao, D. 2008: Structural transition and melting of onion-ring Pd–Pt bimetallic clusters. Chemical Physics Letters 461(1-3): 71-76
Kim, E.; Jin, Y.K.; Seo, Y. 2015: Structural transition and phase behavior of N2 gas hydrates with pinacolyl alcohol and tert-amyl alcohol. Fluid Phase Equilibria 393: 85-90
Basariya, M.R.; Roy, R.K.; Pramanick, A.; Srivastava, V.; Mukhopadhyay, N. 2015: Structural transition and softening in Al–Fe intermetallic compounds induced by high energy ball milling. Materials Science and Engineering: A638: 282-288
Shi, F.; Xia, J.; Andrikidis, C.; Zhao, Y.; Liu, H.; Dou, S. 1994: Structural transition and superconductivity in nonstoichiometric Y1−x Cax Sr2Cu2.8Mo0.1W0.1Oy. Physica B: Condensed Matter 194-196: 1951-1952
Wang, C.; Liu, X.; Shao, J.; Xiong, W.; Ma, W.; Zheng, Y. 2014: Structural transition and temperature-driven conductivity switching of single crystalline VO2(A) nanowires. RSC Adv. 4(109): 64021-64026
Pandian, M.; Matheswaran, P.; Gokul, B.; Sathyamoorthy, R.; Asokan, K. 2019: Structural transition behavior in Indium chalcogenide thin films. Materials Today: Proceedings 18: 1592-1601
Hu, Y.; Miao, K.; Peng, S.; Zha, B.; Xu, L.; Miao, X.; Deng, W. 2016: Structural transition control between dipole–dipole and hydrogen bonds induced chirality and achirality. CrystEngComm 18(17): 3019-3032
Cole, M.W.; Toigo, F. 1978: Structural transition for positive impurity ions in fluids. Physical Review B 17(4): 2054-2056
Bourrous, M.; Kronmüller, H. 1989: Structural transition from the As-quenched to the relaxed state in metallic glasses. Physica Status Solidi (a) 113(2): 383-392
Bhatt, R.N. 1978: Structural transition in A−15compounds: Possible Landau theory descriptions. Physical Review B 17(7): 2947-2955
Khmelevskaya, V.; Malynkin, V.; Solov'ev, S. 1996: Structural transition in FeCr alloys under high dose ion irradiation. Journal of Nuclear Materials 233-237: 240-243
Thamilmaran, P.; Arunachalam, M.; Sankarrajan, S.; Sakthipandi, K.; Sivabharathy, M.; Jebaseelan Samuel, E.J. 2018: Structural transition in Gd doped la Cr O3 isovalent by in-situ ultrasonic measurements. Physica B: Condensed Matter 530: 270-276
Drathen, C.; Nakagawa, T.; Crichton, W.A.; Hill, A.H.; Ohishi, Y.; Margadonna, S. 2015: Structural transition in KMn Cr F6 – a chemically ordered magnetic ferroelectric. Journal of Materials Chemistry C 3(17): 4321-4332
Torchet, G.; Farges, J.; Feraudy, M.F.; Raoult, B. 1989: Structural transition in SF6 clusters. Zeitschrift fr Physik D Atoms, Molecules and Clusters 12(1-4): 93-96
Pradhan, T.; Ghoshal, P.; Biswas, R. 2008: Structural transition in alcohol-water binary mixtures: a spectroscopic study. Journal of Chemical Sciences 120(2): 275-287
Sanloup, C.; Gregoryanz, E.; Degtyareva, O.; Hanfland, M. 2008: Structural transition in amorphous sulfur compressed up to 100 GPa. Acta Crystallographica Section A Foundations of Crystallography 64(a 1): C64-C65
Kiselev, M.; Janich, M.; Hildebrand, A.; Strunz, P.; Neubert, R.; Lombardo, D. 2013: Structural transition in aqueous lipid/bile salt [DPPC/Na DC] supramolecular aggregates: SANS and DLS study. Chemical Physics 424: 93-99
Bajc, J.; Zumer, S. 1997: Structural transition in chiral nematic liquid crystal droplets in an electric field. Physical Review E 55(3): 2925-2937
Kim, D.H.; Lim, D. 2013: Structural transition in epitaxially-strained Bi Fe O3 thin films studied by using second harmonic generation. Journal of the Korean Physical Society 62(5): 734-738
Zhukhovitskii, D.I. 1999: Structural transition in hot small clusters. The Journal of Chemical Physics 110(16): 7770-7778
Lad'yanov, V.I.; Bel'tyukov, A.L.; Tronin, K.G.; Kamaeva, L.V. 2000: Structural transition in liquid cobalt. Journal of Experimental and Theoretical Physics Letters 72(6): 301-303
Ochiai, A.; Takeuchi, K.; Niitsuma, N.; Suzuki, T.; Kasuya, T. 1987: Structural transition in mixed valence Yb 4 as 3. Journal of Magnetism and Magnetic Materials 63-64: 618-620
Rubins, R. 1974: Structural transition in nickel-doped zinc fluotitanate observed by electron paramagnetic resonance. Chemical Physics Letters 28(2): 273-275
Sanjuán, M.L.; Orera, A.; Sobrados, I.; Fuentes, A.F.; Sanz, J. 2018: Structural transition in orthorhombic Li5−x Hx La3Nb2O12 garnets induced by a concerted lithium and proton diffusion mechanism. Journal of Materials Chemistry A 6(6): 2708-2720
Delugeard, Y.; Desuche, J.; Baudour, J.L. 1976: Structural transition in polyphenyls. II. the crystal structure of the high-temperature phase of quaterphenyl. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 32(3): 702-705
Charbonneau, G.; Delugeard, Y. 1976: Structural transition in polyphenyls. III. Crystal structure of biphenyl at 110 K. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 32(5): 1420-1423
Tabata, Y.; Koyama, T.; Kohara, T.; Watanabe, I.; Nakamura, H. 2009: Structural transition in probed by muon spin relaxation. Physica B: Condensed Matter 404(5-7): 746-748
Chakraborty, K.; Bisoi, A.; Ganguly, B.N.; Grover, V.; Sayed, F.N.; Tyagi, A. 2012: Structural transition in rare earth doped zirconium oxide: a positron annihilation study. Materials Research Bulletin 47(11): 3660-3664
Weill, F.; Chevalier, B.; Pechev, S. 2001: Structural transition in the Tb Ni5-x Alxsystem: Structural and magnetic study. Ferroelectrics 250(1): 103-106
Koyama, T.; Yamashita, H.; Kohara, T.; Tabata, Y.; Nakamura, H. 2009: Structural transition in the normal state of the superconductor Mo3Sb7. Materials Research Bulletin 44(5): 1132-1135
Fekih-Ahmed, K.; Khemissi, H.; Aschi, A. 2021: Structural transition induced by physicochemical parameters during complexation and coacervation of Poly-L-Ornithine with poly-(sodium 4-styrene sulfonate). International Journal of Polymeric Materials and Polymeric Biomaterials: 1-11
Cheng, S.; Shen, L.; Ma, C.; Cheng, S.; Dai, Y.; Mi, S.; Liu, M.; Jia, C. 2018: Structural transition induced enhancement of magnetization and magnetoresistance in epitaxial (Pr0.5Ba0.5Mn O3)1−x:(Ce O2)x vertically aligned thin films. CrystEngComm 20(34): 5017-5024
Hirose, K.; Nohira, H.; Koike, T.; Sakano, K.; Hattori, T. 1999: Structural transition layer at Si O2/Siinterfaces. Physical Review B 59(8): 5617-5621
Lu, Q.L.; Luo, Q.Q.; Huang, S.G.; Li, Y.D. 2016: Structural transition of (in Sb) n clusters at n = 6–10. Chemical Physics Letters 663: 128-132
Kudryavtsev, Y.V.; Kucherenko, A.Y.; Dubowik, J.; Smardz, L.; Lee, Y.P. 1998: Structural transition of Fe and Co sublayers in Fe/Zr and Co/Zr multilayered films investigated by magneto-optical spectroscopy. Journal of Vacuum Science-Technology A: Vacuum, Surfaces, and Films 16(2): 389-392
Wakayama, Y.; Gerth, G.; Werner, P.; Gösele, U.; Sokolov, L.V. 2000: Structural transition of Ge dots induced by submonolayer carbon on Ge wetting layer. Applied Physics Letters 77(15): 2328-2330
Chen, W.; Chen, J.; Chen, N.; Zhang, X.; Wu, X.; Jin, X.; Jiang, S. 1997: Structural transition of La.Ba.Cu.O doped with iron. Physica C: Superconductivity 282-287: 753-754
Hou, J.; Zhang, J.; Wang, Z.; Zhang, Z.; Ding, Z. 2014: Structural transition of VO2 (A) nanorods studied by vibrational spectroscopies. RSC Adv. 4(35): 18055-18060
Guettari, M.; Aschi, A.; Gomati, R.; Gharbi, A. 2008: Structural transition of a homopolymer in solvents mixture. Materials Science and Engineering: C28(5-6): 811-815
Safi, R.; Karimi, M.; Madhi, A. 2015: Structural transition of asymmetric poly(ether imide) membrane prepared by wet phase inversion. Polymer Bulletin 72(7): 1763-1774
Siddiqui, U.S.; Kumar, S.; Kabir-ud-Din, 2008: Structural transition of bifunctional surfactants. Monatshefte für Chemie - Chemical Monthly 140(4): 457-462
Ramírez-Bon, R.; Sandoval-Inda, N C.; Espinoza-Beltrán, F J.; Sotelo-Lerma, M.; Zelaya-Angel, O.; Falcony, C. 1997: Structural transition of chemically deposited Cd S films on thermal annealing. Journal of Physics: Condensed Matter 9(45): 10051-10058
Liu, H.; Zou, X.; Wang, C.; Yan, J.; Duan, W. 2012: Structural transition of large lead monoxide clusters. Computational and Theoretical Chemistry 983: 61-64
Felberg, L.E.; Doshi, A.; Hura, G.L.; Sly, J.; Piunova, V.A.; Swope, W.C.; Rice, J.E.; Miller, R.; Head-Gordon, T. 2016: Structural transition of nanogel star polymers with p H by controlling PEGMA interactions with acid or base copolymers. Molecular Physics 114(21): 3221-3231
Wang, J.; Wu, K.; Yang, W.; Wang, X.; Sadowski, J.; Fujikawa, Y.; Sakurai, T. 2005: Structural transition of pentacene monolayer on Ga bilayer: from brick-wall structure to herringbone pattern of molecular dimers. Surface Science 579(1): 80-88
Zhang, Y.; Wang, L.; Wang, W.; Zhou, J. 2006: Structural transition of sheared-liquid metal in quenching state. Physics Letters A 355(2): 142-147
Ishibashi, H.; Yasumi, T. 2007: Structural transition of spinel compound at ferrimagnetic transition temperature. Journal of Magnetism and Magnetic Materials 310(2): E610-E612
Kobayashi, K.; Yasuda, H. 2015: Structural transition of tellurium encapsulated in confined one-dimensional nanospaces depending on the diameter. Chemical Physics Letters 634: 60-65
Nakamura, H.; Chudo, H.; Shiga, M. 2005: Structural transition of the tetrahedral metal cluster: nuclear magnetic resonance study of Ga V4S8. Journal of Physics: Condensed Matter 17(38): 6015-6024
Youn, Y.; Cha, M.; Lee, H. 2016: Structural transition of trimethylamine semi-hydrate by methane inclusion. Fluid Phase Equilibria 413: 123-128
Wang, J.; Zhang, Q.; Qin, J. 2016: Structural transition region of liquid Mg–Li alloys. Computational Materials Science 117: 259-265
Grytsiv, A.; Rogl, P.; Pomjakushin, V. 2006: Structural transition with loss of symmetry in Ti–M–Al based G-phases (MFe and Co). Intermetallics 14(7): 784-791
Chai, Z.; Tan, G.; Yue, Z.; Xue, M.; Liu, Y.; Lv, L.; Ren, H.; Xia, A. 2018: Structural transition, defect complexes and improved ferroelectric behaviors of Bi0.88Sr0.03Gd0.09Fe0.94Mn0.04Co0.02O3/Co1-Mn Fe2O4 bilayer thin films. Ceramics International 44(13): 15770-15777
Xiong, S.; Huang, R.; Peng, C.; Dai, Y.; Li, J.; Bai, W.; Lin, H. 2021: Structural transition, large strain induced by B-site equivalent doping with Hf4+ ions in BNT-based ceramics. Ceramics International 47(5): 6842-6847
Gong, J.; Ma, G.; Chen, G. 1996: Structural transitions and electrical conductivity of C60 films at high temperature. Journal of Materials Research 11(8): 2071-2075
Wang, X.; Wang, B.; Zhao, J.; Wang, G. 2008: Structural transitions and electronic properties of the ultrathin Si C nanotubes under uniaxial compression. Chemical Physics Letters 461(4-6): 280-284
Guevara, Z.; Rodrigues, J.F.D. 2016: Structural transitions and energy use: a decomposition analysis of Portugal 1995–2010. Economic Systems Research 28(2): 202-223
Doye, J.P.K.; Wales, D.J. 1999: Structural transitions and global minima of sodium chloride clusters. Physical Review B 59(3): 2292-2300
Smardz, L.; Le Dang, K.; Niedoba, H.; Chrzumnicka, K. 1995: Structural transitions and magnetic behaviour of different Co phases in multilayers. Journal of Magnetism and Magnetic Materials 140-144: 569-570
Anju; Agarwal, A.; Aghamkar, P.; Singh, V.; Singh, O.; Kumar, A. 2017: Structural transitions and multiferrocity in Ba and Co substituted nanosized bismuth ferrite. Journal of Alloys and Compounds 697: 333-340
Betancourt-Cantera, L.; Bolarín-Miró, A.; Cortés-Escobedo, C.; Hernández-Cruz, L.; Sánchez-De Jesús, F. 2018: Structural transitions and multiferroic properties of high Ni-doped Bi Fe O3. Journal of Magnetism and Magnetic Materials 456: 381-389
Maeno, Y.; Kakehi, N.; Odagawa, A.; Fujita, T. 1990: Structural transitions and superconductivity in (La1-x Bax-y Sry)2Cu O4. Physica B: Condensed Matter 165-166: 1689-1690
Buck, U.; Schmidt, B.; Siebers, J.G. 1993: Structural transitions and thermally averaged infrared spectra of small methanol clusters. The Journal of Chemical Physics 99(12): 9428-9437
Westlake, D.G.; Mueller, M.H.; Knott, H.W. 1973: Structural transitions at low temperatures in vanadium deuterides. Journal of Applied Crystallography 6(3): 206-216
Ballamudi, R.K.; Bitsanis, I.A. 1996: Structural transitions at solid-liquid interfaces. Adsorption 2(1): 69-76
Ostlund, S.; Berker, A.N. 1980: Structural transitions between epitaxially ordered phases in adsorbed submonolayers. Physical Review B 21(11): 5410-5423
Singh, K.; Ganguly, P.; Rao, C. 1982: Structural transitions in (La,Ln)2Cu O4 and La2(Cu,Ni)O4 systems. Materials Research Bulletin 17(4): 493-500
Nakamura, S.; Koyama, Y.; Ishimaru, M. 1991: Structural transitions in Ba1−x M x Bi O3(M = K, Rb). Physica C: Superconductivity 185-189: 695-696
Kudryashov, S. I.; Emel'yanov, V. I. 2001: Structural transitions in Ga as during irradiation by a 100-fs laser pulse. Quantum Electronics 31(7): 565-566
Tanaka, Y.; Maeno, Y.; Nakamura, F.; Fujita, T. 1994: Structural transitions in La2−y−x Ndy Bax Cu O4 with x=0.125. Physica B: Condensed Matter 194-196: 2053-2054
Brett, M.J. 1988: Structural transitions in ballistic aggregation simulation of thin‐film growth. Journal of Vacuum Science-Technology A: Vacuum, Surfaces, and Films 6(3): 1749-1751
Ghazali, A.; Lévy, J. 1997: Structural transitions in clusters. Physics Letters A 228(4-5): 291-296
Boltenhagen, P.; Pittet, N. 1998: Structural transitions in crystalline foams. Europhysics Letters (EPL) 41(5): 571-576
Ruberto, R.; Pastore, G.; Tosi, M. 2008: Structural transitions in interionic force models of liquid Al Cl3. Physics and Chemistry of Liquids 46(5): 548-563
Davies, P.K.; Garzon, F.H. 1987: Structural transitions in ionic conductors and optical materials. Ultramicroscopy 23(3-4): 397-404
Sedykh, V.; Rusakov, V. 2013: Structural transitions in la 0.95 Ba 0.05 Mn 0.98 57 Fe 0.02 O 3 under heat treatment. Hyperfine Interactions 226(1-3): 65-71
Lukjanets, B.; Tovstyuk, K. 1981: Structural transitions in layer crystals under hydrostatic compression. Solid State Communications 38(7): 603-605
Magaña, J.R.; Lannin, J.S. 1984: Structural transitions in liquid Te1−x Sexalloys. Physical Review B 29(10): 5663-5666
Prekas, D.; Lüder, C.; Velegrakis, M. 1998: Structural transitions in metal ion-doped noble gas clusters: Experiments and molecular dynamics simulations. The Journal of Chemical Physics 108(11): 4450-4459
Mitróová, Z.; Koneracká, M.; Tomašovičová, N.; Timko, M.; Jadzyn, J.; Vávra, I.; Éber, N.; Fodor-Csorba, K.; Tóth-Katona, T.; Vajda, A.; Kopčanský, P. 2010: Structural transitions in nematic liquid crystals doped with magnetite functionalized single walled carbon nanotubes. Physics Procedia 9: 41-44
Arteca, G.A. 2000: Structural transitions in neutral and charged proteins in Vacuo. Journal of Molecular Graphics and Modelling 18(4-5): 548-549
Calvo, F.; Torchet, G.; de Feraudy, M. 1999: Structural transitions in nitrogen molecular clusters: Experiment and simulation. The Journal of Chemical Physics 111(10): 4650-4658
Pittet, N.; Boltenhagen, P.; Rivier, N.; Weaire, D. 1996: Structural transitions in ordered, cylindrical foams. Europhysics Letters (EPL) 35(7): 547-552
Julien, C.; Massot, M. 2002: Structural transitions in positive electrodes for Li-ion batteries the vibronic approach. Ionics 8(1-2): 6-16
Proykova, A.; Radev, R.; Li, F.; Stephen Berry, R. 1999: Structural transitions in small molecular clusters. The Journal of Chemical Physics 110(8): 3887-3896
Gafner, S.L.; Redel', L.V.; Goloven'ko, Z.V.; Gafner, Y.Y.; Samsonov, V.M.; Kharechkin, S.S. 2009: Structural transitions in small nickel clusters. JETP Letters 89(7): 364-369
Vaupotič, N.; Čopič, M.; Sluckin, T.J. 1998: Structural transitions in surface-stabilized smectic-Ccells near thesmectic−C–smetic−Aphase-transition temperature. Physical Review E 57(5): 5651-5659
Kalsbach, W.; Freiburg, C.; Poppe, U.; Takabatake, T.; Pobell, F. 1983: Structural transitions in the cluster compounds Sr Mo6S8 and Eu Mo6Se8. Physics Letters A 98(7): 364-366
Nagai, K.; Kurata, H.; Isoda, S.; Takashi Kobayashi, 1993: Structural transitions in the graphite-Al Cl3-Fe Cl3 system. Journal of Physics and Chemistry of Solids 54(5): 533-542
Fukada, Y.; Totani, M.; Yamada, I. 1991: Structural transitions in the two-dimensional Jahn-Teller system K2Cux Zn1-x F4with the variation of x: experiments based on the Raman scattering of phonons. Journal of Physics: Condensed Matter 3(35): 6925-6933
Li, T.; Lee, S.; Han, S.; Wang, G. 2002: Structural transitions of Au55 isomers. Physics Letters A 300(1): 86-92
Tao, R.; Jiang, Q. 1998: Structural transitions of an electrorheological and magnetorheological fluid. Physical Review E 57(5): 5761-5765
Wei, S.; Yan, W.; Li, Y.; Liu, W.; Fan, J.; Zhang, X. 2001: Structural transitions of mechanically alloyed Fe100−x Cux systems studied by X-ray absorption fine structure. Physica B: Condensed Matter 305(2): 135-142
Jákli, A.; Lischka, C.; Weissflog, W.; Pelzl, G.; Rauch, S.; Heppke, G. 2000: Structural transitions of smectic phases formed by achiral bent-core molecules. Ferroelectrics 243(1): 239-247
Zang, Q.; Chen, G.; Lu, W. 2012: Structural transitions of tin clusters: Snn (n=34–44). Chemical Physics Letters 552: 69-72
Unruh, H. 1980: Structural transitions of ß-K2SO4,-type crystals. Ferroelectrics 25(1): 507-510
Kavun, V.; Uvarov, N.; Slobodyuk, A.; Ulihin, A.; Kovaleva, E.; Zemnukhova, L. 2018: Structural transitions, ion mobility, and conductivity in Cs Sb F3(H2PO4). Journal of Solid State Chemistry 258: 460-466
Kosa, M.; Major, D.T. 2015: Structural trends in hybrid perovskites [Me2NH2]M3 (M = Mn, Fe, Co, Ni, Zn): computational assessment based on Bader charge analysis. CrystEngComm 17(2): 295-298
Becker, J.Y.; Bernstein, J.; Bittner, S.; Sarma, J.A.R.P.; Shaik, S.S. 1989: Structural trends in potential organic conductors based on (donor-CH2)2 tetracyanoquinodimethane molecules. Chemistry of Materials 1(4): 412-420
Kennedy, B. J. 1997: Structural trends in pyrochlore-type oxides. Physica B: Condensed Matter 241-243: 303-310
Wang, H.; Zhang, Q.; Zhang, T.; Wang, J.; Wei, G.; Liu, M.; Ning, P. 2019: Structural tuning and NH3-SCO performance optimization of Cu O-Fe2O3 catalysts by impact of thermal treatment. Applied Surface Science 485: 81-91
Sarrao, J.; Bauer, E.; Morales, L.; Thompson, J. 2005: Structural tuning and anisotropy in. Physica B: Condensed Matter 359-361: 1144-1146
Fang, H.; Roldan, A.; Tian, C.; Zheng, Y.; Duan, X.; Chen, K.; Ye, L.; Leoni, S.; Yuan, Y. 2019: Structural tuning and catalysis of tungsten carbides for the regioselective cleavage of C O bonds. Journal of Catalysis 369: 283-295
Liu, X.; Chen, S.; Li, S.; Nie, H.; Feng, Y.; Fan, Y.; Yu, M.; Chang, Z.; Bu, X. 2020: Structural tuning of Zn(ii)-MOFs based on pyrazole functionalized carboxylic acid ligands for organic dye adsorption. CrystEngComm 22(36): 5941-5945
Chou, C.; Chen, P.; Hu, F.; Chi, Y.; Ho, S.; Kai, J.; Liu, S.; Chou, P. 2014: Structural tuning of ancillary chelate in tri-carboxyterpyridine Ru(ii) sensitizers for dye sensitized solar cells. J. Mater. Chem. A 2(15): 5418-5426
Li, C.; Wei, Z.; Pan, M.; Deng, H.; Jiang, J.; Su, C. 2019: Structural tuning of coordination polymers by 4-connecting metal node and secondary building process. Chinese Chemical Letters 30(6): 1297-1301
Notomi, M.; Shinya, A.; Yamada, K.; Takahashi, J.; Takahashi, C.; Yokohama, I. 2002: Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs. IEEE Journal of Quantum Electronics 38(7): 736-742
Miao, W.; Zou, W.; Luo, Y.; Zheng, N.; Zhao, Q.; Xie, T. 2020: Structural tuning of polycaprolactone based thermadapt shape memory polymer. Polymer Chemistry 11(7): 1369-1374
Tessarolo, M.; Gedefaw, D.; Bolognesi, M.; Liscio, F.; Henriksson, P.; Zhuang, W.; Milita, S.; Muccini, M.; Wang, E.; Seri, M.; Andersson, M.R. 2014: Structural tuning of quinoxaline-benzodithiophene copolymers via alkyl side chain manipulation: synthesis, characterization and photovoltaic properties. J. Mater. Chem. A 2(29): 11162-11170
Hu, G.; Choi, J.H.; Eom, C.B.; Harris, V.G.; Suzuki, Y. 2000: Structural tuning of the magnetic behavior in spinel-structure ferrite thin films. Physical Review B 62(2): R779-R782
Ishizuka, S.; Yamada, A.; Fons, P.J.; Shibata, H.; Niki, S. 2014: Structural tuning of wide-gap chalcopyrite Cu Ga Se2 thin films and highly efficient solar cells: differences from narrow-gap Cu(In,Ga)Se2. Progress in Photovoltaics: Research and Applications 22(7): 821-829
Peng, X.; Wang, Y.; Xu, D. 2013: Structural twin parametric-margin support vector machine for binary classification. Knowledge-Based Systems 49: 63-72
Qi, Z.; Tian, Y.; Shi, Y. 2013: Structural twin support vector machine for classification. Knowledge-Based Systems 43: 74-81
Gregorius, H.; Kosman, E. 2018: Structural type diversity: measuring structuredness of communities by type diversity. Theoretical Ecology 11(4): 383-394
Kozakiewicz, A.; Kachel, S.; Jóźwiak, S.; Jóźwiak, P. 2016: Structural ultimate strength analysis of a first stage fan blade in a turbine jet engine RD-33. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 232(1): 77-84
Zhang, X.; Pandey, M.D.; Luo, H. 2021: Structural uncertainty analysis with the multiplicative dimensional reduction–based polynomial chaos expansion approach. Structural and Multidisciplinary Optimization 64(4): 2409-2427
Carlson, J.B.; Craig, B.; Schwarz, J.C. 2000: Structural uncertainty and breakpoint tests: an application to equilibrium velocity. Journal of Economics and Business 52(1-2): 101-115
Bertocchi, G.; Spagat, M. 1997: Structural uncertainty and subsidy removal for economies in transition. European Economic Review 41(9): 1709-1733
Lorente, A.; Folkert Boersma, K.; Yu, H.; Dörner, S.; Hilboll, A.; Richter, A.; Liu, M.; Lamsal, L.N.; Barkley, M.; De Smedt, I.; Van Roozendael, M.; Wang, Y.; Wagner, T.; Beirle, S.; Lin, J.; Krotkov, N.; Stammes, P.; Wang, P.; Eskes, H.J.; Krol, M. 2017: Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals. Atmospheric Measurement Techniques 10(3): 759-782
Leroux, S.J.; Albert, C.H.; Lafuite, A.; Rayfield, B.; Wang, S.; Gravel, D. 2016: Structural uncertainty in models projecting the consequences of habitat loss and fragmentation on biodiversity. Ecography 40(1): 36-47
Wildermuth, R.P.; Fay, G.; Gaichas, S. 2018: Structural uncertainty in qualitative models for ecosystem-based management of Georges Bank. Canadian Journal of Fisheries and Aquatic Sciences 75(10): 1635-1643
Baldissera Pacchetti, M. 2020: Structural uncertainty through the lens of model building. Synthese 198(11): 10377-10393
Morissette, R.; Salvas-Bronsard, L. 1993: Structural unemployment and disequilibrium. European Economic Review 37(6): 1251-1257
Loungani, P. 1991: Structural unemployment and public policy in interwar Britain. Journal of Monetary Economics 28(1): 149-159
Janiak, A. 2013: Structural unemployment and the costs of firm entry and exit. Labour Economics 23: 1-19
Hoque, A.; Inder, B. 1991: Structural unempolyment in Australia. Applied Economics 23(1): 723-730
Hoque, A.; Inder, B.A. 1991: Structural unempolyment in Australia. Applied Economics 23(4): 723-730
Takenaka, H.; Takaoka, H.; Ishii, Y.; Hashizume, H. 1989: Structural uniformity of multilayered tungsten‐carbon Bragg reflectors prepared by rf magnetron sputtering. Review of Scientific Instruments 60(7): 2021-2023
Smith, P.; Aksenov, S.; Jablonski, S.; Burns, P. 2018: Structural unit charge density and molecular cation templating effects on orientational geometric isomerism and interlayer spacing in 2-D uranyl sulfates. Journal of Solid State Chemistry 266: 286-296
Doweidar, H.; El-Egili, K.; Altawaf, A. 2017: Structural units and properties of Ba F 2 –Pb F 2 –B 2 O 3 glasses. Journal of Non-Crystalline Solids 464: 73-80
Doweidar, H.; El-Egili, K.; Ramadan, R.; Al-Zaibani, M. 2017: Structural units distribution, phase separation and properties of Pb O–Ti O 2 –B 2 O 3 glasses. Journal of Non-Crystalline Solids 466-467: 37-44
Lang, I. 1982: Structural units of maltenes and asphaltenes from hydrogenation of coal. Collection of Czechoslovak Chemical Communications 47(3): 843-852
Neufeld, J. 1977: Structural unity in "The Deptford Trilogy": Robertson Davies as egoist. Journal of Canadian Studies 12(1): 68-74
Ziara, M.M. 2000: Structural upgrading of RC beams using composite overlays. Construction and Building Materials 14(8): 397-406
Krüger, T.; Kenkmann, T.; Hergarten, S. 2017: Structural uplift and ejecta thickness of lunar mare craters: new insights into the formation of complex crater rims. Meteoritics-Planetary Science 52(10): 2220-2240
Burgoyne, C. 1987: Structural use of parafil ropes. Construction and Building Materials 1(1): 3-13
Gedge, G. 2008: Structural uses of stainless steel - buildings and civil engineering. Journal of Constructional Steel Research 64(11): 1194-1198
Rababeh, S.; Al Qablan, H.; Abu-Khafajah, S.; El-Mashaleh, M. 2014: Structural utilization of wooden beams as anti-seismic and stabilising techniques in stone masonry in Qasr el-Bint, Petra, Jordan. Construction and Building Materials 54: 60-69
Patel, P.N.; Tolia, N. 2021: Structural vaccinology of malaria transmission-blocking vaccines. Expert Review of Vaccines 20(2): 199-214
Murray, R.E.; Beach, R.; Barnes, D.; Snowberg, D.; Berry, D.; Rooney, S.; Jenks, M.; Gage, B.; Boro, T.; Wallen, S.; Hughes, S. 2021: Structural validation of a thermoplastic composite wind turbine blade with comparison to a thermoset composite blade. Renewable Energy 164: 1100-1107
Marmarinos, C.; Bolatoglou, T.; Karteroliotis, K.; Apostolidis, N. 2019: Structural validity and reliability of new index for evaluation of high-level basketball players. International Journal of Performance Analysis in Sport 19(4): 624-631
Romero, S.; Iraurgi, I.; Madariaga, A.; Gould, J. 2020: Structural validity of the Serious Leisure Inventory and Measure (SLIM) in different sets of athletes. Journal of Leisure Research 51(4): 416-431
Reverte, I.; Golay, P.; Favez, N.; Rossier, J.; Lecerf, T. 2014: Structural validity of the Wechsler Intelligence Scale for Children (WISC-IV) in a French-speaking Swiss sample. Learning and Individual Differences 29: 114-119
Medina, E.; Cuevas, E.; Molina, S.; Lugo, A.E.; Ramos, O. 2010: Structural variability and species diversity of a dwarf Caribbean dry forest. Caribbean Journal of Science 46(2-3): 203-215
Abdullah, N.; Ozair, L.N.; Samsudin, H.; Tizzard, G.J.; Coles, S.J.; Mohamadin, M.I. 2021: Structural variability and thermally-induced mesomorphisms in complexes of copper(II) with 4-halobenzoates, 2,2'-bipyridine and 4,4'-bis(dodecyl)-2,2'-bipyridine. Journal of Coordination Chemistry 74(12): 1947-1964
Beheshti, A.; Nozarian, K.; Babadi, S.S.; Noorizadeh, S.; Motamedi, H.; Mayer, P.; Bruno, G.; Rudbari, H.A. 2017: Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies. Journal of Solid State Chemistry 249: 70-79
Colodrero, R.M.P.; Salcedo, I.R.; Bazaga-García, M.; Milla-Pérez, D.F.; Durán-Martín, J.D.; Losilla, E.R.; Moreno-Real, L.; Rius, J.; Aranda, M.A.G.; Demadis, K.D.; Olivera-Pastor, P.; Cabeza, A. 2017: Structural variability in M2+ 2-hydroxyphosphonoacetate moderate proton conductors. Pure and Applied Chemistry 89(1): 75-87
Gutmann, V.; Resch, G.; Linert, W. 1982: Structural variability in solutions. Coordination Chemistry Reviews 43: 133-164
Hazari, D.; Jana, S.K.; Seth, S.K.; Puschmann, H.; Dalai, S. 2016: Structural variability of Ag(I) metal–organic networks: C–H⋯π and metal⋯π interactions. Journal of Coordination Chemistry 69(3): 562-573
Buban, J.P.; Chi, M.; Masiel, D.J.; Bradley, J.P.; Jiang, B.; Stahlberg, H.; Browning, N.D. 2009: Structural variability of edge dislocations in a Sr Ti O3 low-angle [001] tilt grain boundary. Journal of Materials Research 24(7): 2191-2199
Valášková, M.; Zdrálková, J.; Simha Martynková, G.; Smetana, B.; Vlček, J.; Študentová, S. 2014: Structural variability of high purity cordierite/steatite ceramics sintered from mixtures with various vermiculites. Ceramics International 40(6): 8489-8498
Bochtler, M.; Sokolowska, M.; Czapinska, H.; Wojciechowski, M.; Firczuk, M.; Szczepanowski, R. 2011: Structural variability of type Ii restriction endonucleases. Acta Crystallographica Section A Foundations of Crystallography 67(a 1): C784-C785
Hammond, R.B.; Pencheva, K.; Roberts, K.J. 2012: Structural variability within, and polymorphic stability of, nano-crystalline molecular clusters of l-glutamic acid and D-mannitol, modelled with respect to their size, shape and 'crystallisability'. CrystEngComm 14(3): 1069-1082
Wan, X.; Jiang, F.; Chen, L.; Pan, J.; Zhou, K.; Su, K.; Pang, J.; Lyu, G.; Hong, M. 2015: Structural variability, unusual thermochromic luminescence and nitrobenzene sensing properties of five Zn(ii) coordination polymers assembled from a terphenyl-hexacarboxylate ligand. CrystEngComm 17(20): 3829-3837
Searle, B.W.; Lorton Jr., P.; Suppes, P. 1974: Structural variables affecting CAi performance on arithmetic word problems of disadvantaged and deaf students. Educational Studies in Mathematics 5(1): 371-384
Searle, B.W.; Lorton Jr., P.; Suppes, P. 1974: Structural variables affecting Ca i performance on arithmetic word problems of disadvantaged and deaf students. Educational Studies in Mathematics 5(3): 371-384
Giorgio, B.; Luisa, F.; Sonia, R. 2015: Structural variables drive the distribution of the sensitive lichen Lobaria pulmonaria in Mediterranean old-growth forests. Ecological Indicators 53: 37-42
Mandle, R.J.; Cowling, S.J.; Goodby, J.W. 2021: Structural variants of RM734 in the design of splay nematic materials. Liquid Crystals 48(12): 1780-1790
Hermes, M.B.; Moreira, A.S.F.P.; Castro, N.M.d.; Oliveira, D.C.d. 2018: Structural variation among leaves in Aechmea distichantha Lem. (Bromeliaceae) rosettes, considering apical and basal differences. Flora 248: 76-86
Redhammer, G.J.; Roth, G. 2004: Structural variation and crystal chemistry of Li Me3+Si2O6 clinopyroxenes Me3+ = Al, Ga, Cr, V, Fe, Sc and in. Zeitschrift für Kristallographie - Crystalline Materials 219(5): 278-294
Hao, J.; Xu, Z.; Chu, R.; Zhang, Y.; Li, G.; Yin, Q. 2009: Structural variation and dielectric behavior of (K0.5Na0.5)0.96Sr0.02Nb(1−x)Sbx O3 lead-free piezoelectric ceramics. Physica B: Condensed Matter 404(14-15): 1974-1978
Guo, A.; Li, W.; Jiang, X.; Wang, C.; Lu, M.; Jiang, Y. 2015: Structural variation and electrical properties of amorphous silicon ruthenium thin films embedded with nanocrystals. Materials Letters 143: 80-83
Ahn, C.; Park, H.; Nahm, S.; Uchino, K.; Lee, H.; Lee, H. 2007: Structural variation and piezoelectric properties of 0.95(Na0.5K0.5)Nb O3–0.05Ba Ti O3 ceramics. Sensors and Actuators A: Physical 136(1): 255-260
Kai, A.; Sheng, Y.; Yao, J.; Chen, Q.; Liu, H. 2018: Structural variation determined by length-matching effects: towards the formation of flexible porous molecular crystals. CrystEngComm 20(19): 2648-2652
Neog, B.; Sarmah, N.; Kar, R.; Bhattacharyya, P.K. 2012: Structural variation facilitate alkylation: a conceptual DFT study. Computational and Theoretical Chemistry 986: 79-84
Zhang, S.; Zhao, R.; Li, G.; Zhang, H.; Zhang, C.; Muller, G. 2014: Structural variation from heterometallic heptanuclear or heptanuclear to cubane clusters based on 2-hydroxy-3-ethoxy-benzaldehyde: effects of p H and temperature. RSC Adv. 4(97): 54837-54846
Pintzuk, S.; Haeberli, E. 2008: Structural variation in Old English root clauses. Language Variation and Change 20(3): 367-407
Yao, Y.; Jiang, H.; Zhang, Y.; Wang, H B.; Liu, W.; Li, F H.; Che, G C. 2003: Structural variation in a (Y1 y Cay)(Sr2 x Bax)(Cu0.5B0.5)Cu2O7  system. Superconductor Science and Technology 16(10): 1252-1256
Dernier, P.; Gyorgy, E.; Grodkiewicz, W. 1974: Structural variation in the Y3−c Prc Sc Fe4O12 garnet system. Journal of Solid State Chemistry 10(2): 122-127
Comba, P.; Martin, B.; Prikhod`ko, A.; Pritzkow, H.; Rohwer, H. 2005: Structural variation in the copper(II) complexes with a tetradentate bis-6-methylpyridine-substituted bispidine ligand. Comptes Rendus Chimie 8(9-10): 1506-1518
Fuhrmeister, P.; Myers, E.B. 2021: Structural variation in the temporal lobe predicts learning and retention of non-native speech sounds. Language, Cognition and Neuroscience 37(1): 63-79
Bickmann, K.; Hauck, J. 1991: Structural variation of epitaxial in P/Ga As/Si films at thermal treatment. Materials Letters 11(8-9): 236-240
Ohira, A.; Kodaira, S.; Nakamura, Y.; Fujie, G.; Arai, R.; Miura, S. 2017: Structural variation of the oceanic Moho in the Pacific plate revealed by active-source seismic data. Earth and Planetary Science Letters 476: 111-121
Pal, A.; Chand, S.; Senthilkumar, S.; Neogi, S.; Das, M.C. 2016: Structural variation of transition metal coordination polymers based on bent carboxylate and flexible spacer ligand: polymorphism, gas adsorption and SC-SC transmetallation. CrystEngComm 18(23): 4323-4335
Ghani, H.; Zeilinger, G.; Sobel, E.R.; Heidarzadeh, G. 2018: Structural variation within the Himalayan fold and thrust belt: a case study from the Kohat-Potwar Fold Thrust Belt of Pakistan. Journal of Structural Geology 116: 34-46
Campanelli, A.R.; Domenicano, A. 2018: Structural variation, π-charge transfer, and transmission of electronic substituent effects through the carbon-carbon triple bond in β-substituted phenylacetylenes: a quantum chemical study, and a comparison with (E)-β-substituted styrenes. Structural Chemistry 30(1): 9-21
Sugiura, T.; Arima, H.; Nagai, T.; Sugiyama, K. 2018: Structural variations accompanied by thermal expansion of diaspore: in-situ single-crystal and powder X-ray diffraction study. Physics and Chemistry of Minerals 45(10): 1003-1010
Antao, S.M.; Hovis, G.L. 2021: Structural variations across the nepheline (Na Al Si O4)–kalsilite (KAl Si O4) series. American Mineralogist 106(5): 801-811
Hughes, J.M.; Harlov, D.; Rakovan, J.F. 2018: Structural variations along the apatite F-OH join. American Mineralogist 103(12): 1981-1987
Wu, H.; Zhou, W.; Udovic, T.J.; Rush, J.J.; Yildirim, T. 2008: Structural variations and hydrogen storage properties of Ca5Si3 with Cr5B3-type structure. Chemical Physics Letters 460(4-6): 432-437
Grushko, B.; Wittmann, R.; Urban, K. 1994: Structural variations and transformation behavior of the Al68Cu11Co21 decagonal phase. Journal of Materials Research 9(11): 2899-2906
Twilprawat, P.; Kim, S.; Srikulnath, K.; Han, K. 2017: Structural variations generated by simian foamy virus-like (SFV) in Crocodylus siamensis. Genes-Genomics 39(10): 1129-1138
Wedal, J.C.; Windorff, C.J.; Huh, D.N.; Ryan, A.J.; Ziller, J.W.; Evans, W.J. 2020: Structural variations in cyclopentadienyl uranium(III) iodide complexes. Journal of Coordination Chemistry 74(1-3): 74-91
Alazzo, A.; Lovato, T.; Collins, H.; Taresco, V.; Stolnik, S.; Soliman, M.; Spriggs, K.; Alexander, C. 2018: Structural variations in hyperbranched polymers prepared via thermal polycondensation of lysine and histidine and their effects on DNA delivery. Journal of Interdisciplinary Nanomedicine 3(2): 38-54
Neudert, L.; Schwarzmüller, S.; Schmitzer, S.; Schnick, W.; Oeckler, O. 2018: Structural variations in indium tin tellurides and their thermoelectric properties. Journal of Solid State Chemistry 258: 289-297
Yokosawa, T.; Saitoh, K.; Tanaka, M.; Tsai, A.P. 2002: Structural variations in local areas of an Al70Ni15Fe15 decagonal quasicrystal and the interpretation by the 1-nm column-pair scheme. Journal of Alloys and Compounds 342(1-2): 169-173
Anderson, O.P.; Packard, A.B. 1979: Structural variations in macrocyclic copper(II) complexes. Crystal and molecular structure of iodo [difluoro[3,3'-(trimethylenedinitrilo)bis(2-butanone oximato)]borato]copper(II), [Cu(cyclops)I]. Inorganic Chemistry 18(11): 3064-3068
Anderson, O.P.; Packard, A.B. 1980: Structural variations in macrocyclic copper(II) complexes: crystal and molecular structure of (difluoro-3,3'-(trimethylenedinitrilo)bis(2-butanone oximato)borato)(pyridine)copper(II) perchlorate, [Cu(cyclops)py]Cl O4. Inorganic Chemistry 19(7): 2123-2127
Anderson, O.P.; Packard, A.B. 1980: Structural variations in macrocyclic copper(II) complexes: crystal and molecular structure of cyano difluoro-3,3-trimethylenedinitrilo bis 2-butanone oximato borato copper II-methanol, [Cu cyclops CN].CH3OH. Inorganic Chemistry 19(10): 2941-2945
Anderson, O.P.; Packard, A.B. 1979: Structural variations in macrocyclic copper(II) complexes: crystal and molecular structures of [Cu(cyclops)H2O](Cl O4) and [Cu(Pre H)H2O](Cl O4).H2O. Inorganic Chemistry 18(7): 1940-1947
Gai, P.L.; Mitra, R.; Weertman, J.R. 2002: Structural variations in nanocrystalline nickel films. Pure and Applied Chemistry 74(9): 1519-1526
Lee, M.K.; Tien, C.; Charnaya, E.; Sheu, H.; Kumzerov, Y. 2010: Structural variations in nanosized confined gallium. Physics Letters A 374(13-14): 1570-1573
Chen, C.; Qiu, H.; Chen, W.; Wang, D. 2008: Structural variations in nickel, palladium, and platinum complexes containing pyrimidyl N-heterocyclic carbene ligand. Journal of Organometallic Chemistry 693(20): 3273-3280
Bußkamp, H.; Deacon, G.B.; Hilder, M.; Junk, P.C.; Kynast, U.H.; Lee, W.W.; Turner, D.R. 2007: Structural variations in rare earth benzoate complexes : Part I. Lanthanum. CrystEngComm 9(5): 394-411
Hazra, S.; Sarkar, B.; Naiya, S.; Drew, M.G.; Ghosh, A. 2012: Structural variations in self-assembled coordination complexes of Zn(II) with hexamethylenetetramine and isomeric 2-, 3- and 4-nitrobenzoates. Polyhedron 46(1): 8-15
Eckert-Maksić, M.; Maksić, Z.; Skancke, A.; Skancke, P. 1988: Structural variations in small ring hydrocarbons bridged by allenic double bonds. Journal of Molecular Structure: THEOCHEM 164(1-2): 25-35
Hoekstra, J.; Yan, H.; Kalonji, G.; Jónsson, H. 1994: Structural variations in strained crystalline multilayers. Journal of Materials Research 9(8): 2190-2197
Thuéry, P. 2015: Structural variations in terbium(III) complexes with 1,3-adamantanedicarboxylate and diverse co-ligands. Journal of Solid State Chemistry 227: 265-272
Redhammer, G.; Roth, G. 2002: Structural variations in the aegirine solid-solution series (Na,Li)Fe Si2O6 at 298 K and 80 K. Zeitschrift für Kristallographie - Crystalline Materials 217(2): 63-72
Saunders, L.N.; Pratt, M.E.; Hann, S.E.; Dawe, L.N.; Decken, A.; Kerton, F.M.; Kozak, C.M. 2012: Structural variations in the coordination chemistry of amine-bis(phenolate) cobalt(II/III) complexes. Polyhedron 46(1): 53-65
Cotton*, F.; Daniels, L. M.; Jordan Iv, G. T.; Murillo*, C. A.; Pascual, I. 2000: Structural variations in the ligands around a simple oxo-centered building block, the tetrahedral [M4O]6+ unit, M=Mn and Fe. Inorganica Chimica Acta 297(1-2): 6-10
Gardiner, M.G.; Raston, C.L.; Tolhurst, V.; Viebrock, H. 1997: Structural variations in the organo-potassium derivatives of triphenylmethane with PMDTA: a new modification of [Ph3CK · (N,N,N′,N″,N″-pentamethyldiethylenetriamine)]n. Journal of Organometallic Chemistry 531(1-2): 81-85
Peters, L.; Knorr, K.; Fechtelkord, M.; Appel, P.; Depmeier, W. 2006: Structural variations in the solid solution series of sodalite-type |(Eux Ca2–x)4(OH)8|[(Al2+x Si1–x)4O24]-SOD with 0 ≤x≤ 1, determined by X-ray powder diffraction and27Al MAS NMR spectroscopy. Zeitschrift für Kristallographie - Crystalline Materials 221(9): 643-648
Huang, W.; Lee, C. 2011: Structural variations in the ternary system Hf Al2−x Cux (x = 0.2–1.0). Intermetallics 19(12): 1849-1856
Cruciani, G.; Matteucci, F.; Dondi, M.; Baldi, G.; Barzanti, A. 2005: Structural variations of Cr-doped (Y,REE)Al O3 perovskites. Zeitschrift für Kristallographie - Crystalline Materials 220(11): 930-937
Aktas, O.; Yasyerli, S.; Dogu, G.; Dogu, T. 2011: Structural variations of MCF and SBA-15-like mesoporous materials as a result of differences in synthesis solution p H. Materials Chemistry and Physics 131(1-2): 151-159
Dziadek, M.; Zagrajczuk, B.; Jelen, P.; Olejniczak, Z.; Cholewa-Kowalska, K. 2016: Structural variations of bioactive glasses obtained by different synthesis routes. Ceramics International 42(13): 14700-14709
Scott, M.A. 1977: Structural variations of extragalactic radio sources over large frequency ranges. Monthly Notices of the Royal Astronomical Society 179(3): 377-388
Begin, D.; Lelaurain, M.; Billaud, D. 1989: Structural variations of highly-oriented polyacetylene upon doping with Ga Cl4−. Synthetic Metals 34(1-3): 677-682
Kudeyarova, A.Y. 2012: Structural variations of humic acids in overphosphatized soils. Russian Journal of General Chemistry 82(13): 2216-2225
Lin, C.; Ringsdorf, H.; Ebert, M.; Kleppinger, R.; Wendorff, J.H. 1989: Structural variations of liquid crystalline polymers with phasmidic-type mesogens. Liquid Crystals 5(6): 1841-1847
Hatert, F.; Dal Bo, F.; Baijot, M. 2013: Structural variations of olivine-type phosphates: a good example of how minerals can inspire the development of new materials. Acta Crystallographica Section A Foundations of Crystallography 69(a 1): S122-S123
Abasov, S.; Bagirov, M.; Malin, V.; Volchenkov, E. 1971: Structural variations of polystyrene under the effect of electric discharges. European Polymer Journal 7(9): 1287-1293
Yeh, Y.; Raitses, Y.; Yao, N. 2016: Structural variations of the cathode deposit in the carbon arc. Carbon 105: 490-495
Melen, R.L.; Rawson, J.M. 2013: Structural variations on an electron precise theme: Rationalising the structures of main group cages. Coordination Chemistry Reviews 257(7-8): 1232-1243
Yuan, J.; Ran, N.A.; Ford, M.J.; Wang, M.; Ravva, M.K.; Mai, C.; Liu, X.; Brédas, J.; Nguyen, T.; Ma, W.; Bazan, G.C. 2017: Structural variations to a donor polymer with low energy losses. Journal of Materials Chemistry A 5(35): 18618-18626
Kokkinaki, T. 2018: Structural variations, quantitative differences and similarities between maternal and paternal infant-directed speech. Early Child Development and Care 189(12): 1925-1942
Iyer, A.K.; Zhang, Y.; Scheifers, J.P.; Fokwa, B.P. 2019: Structural variations, relationships and properties of M2B metal borides. Journal of Solid State Chemistry 270: 618-635
Sharma, R.P.; Kumar, S. 2018: Structural varieties in Copper(II) aryl-carboxylates/-sulphonates with N-donor ligands. Materials Today: Proceedings 5(7): 15376-15385
Wang, Q.; Guo, G.; Mak, T.C. 2003: Structural varieties in double salts of silver acetylide containing ancillary anions and terminal ligands. Journal of Organometallic Chemistry 670(1-2): 235-242
Plass, W. 2009: Structural variety and magnetic properties of polynuclear assemblies based on 2-aminoglucose and tritopic triaminoguanidine ligands. Coordination Chemistry Reviews 253(19-20): 2286-2295
Lübbe, G.; Fröhlich, R.; Kehr, G.; Erker, G. 2011: Structural variety and stereochemical features of bis(diphenylphosphinyl)[3]ferrocenophane gold(I) complexes. Inorganica Chimica Acta 369(1): 223-230
Breeze, M.I.; Chamberlain, T.W.; Clarkson, G.J.; de Camargo, R.P.; Wu, Y.; de Lima, J.F.; Millange, F.; Serra, O.A.; O'Hare, D.; Walton, R.I. 2017: Structural variety in ytterbium dicarboxylate frameworks and in situ study diffraction of their solvothermal crystallisation. CrystEngComm 19(17): 2424-2433
Menezes, D.C.; de Lima, G.M.; Wardell, J.L.; Gomez-Banderas, J.; Harrison, W.T. 2017: Structural variety of 2-amidoethyltin compounds. Journal of Organometallic Chemistry 848: 318-324
Ivanova, O.P.; Krivandin, A.V.; Zav'yalov, S.A.; Zhuravleva, T.S. 2021: Structural variety of Cd S in films synthesized by vapor deposition polymerization. Russian Chemical Bulletin 70(9): 1699-1705
Gugin, N.Y.; Virovets, A.; Peresypkina, E.; Davydova, E.I.; Timoshkin, A.Y. 2020: Structural variety of aluminium and gallium coordination polymers based on bis-pyridylethylene: from molecular complexes to ionic networks. CrystEngComm 22(27): 4531-4543
Lanne, M.; Lütkepohl, H.; Maciejowska, K. 2010: Structural vector autoregressions with Markov switching. Journal of Economic Dynamics and Control 34(2): 121-131
Lütkepohl, H.; Netšunajev, A. 2017: Structural vector autoregressions with heteroskedasticity: a review of different volatility models. Econometrics and Statistics 1: 2-18
Lütkepohl, H.; Netšunajev, A. 2017: Structural vector autoregressions with smooth transition in variances. Journal of Economic Dynamics and Control 84: 43-57
Lütkepohl, H. 2006: Structural vector autoregressive analysis for cointegrated variables. Allgemeines Statistisches Archiv 90(1): 75-88
Dietz, C.; Hart, T.K.; Nemati, R.; Yao, X.; Nichols, F.C.; Smith, M.B. 2016: Structural verification via convergent total synthesis of dipeptide–lipids isolated from Porphyromonas gingivalis. Tetrahedron 72(47): 7557-7569
Pattanasattayavong, P.; Packwood, D.M.; Harding, D.J. 2019: Structural versatility and electronic structures of copper(i) thiocyanate (Cu SCN)–ligand complexes. Journal of Materials Chemistry C 7(41): 12907-12917
Reis, N.V.; Marinho, M.V.; Simões, T.R.G.; Metz, K.C.; Vaz, R.C.; Oliveira, W.X.; Pereira, C.L.; Barros, W.P.; Pinheiro, C.B.; Giese, S.O.; Hughes, D.L.; Pirota, K.R.; Nunes, W.C.; Stumpf, H.O. 2019: Structural versatility driven by the flexible di(4-pyridyl) sulfide ligand: from cobalt(II) single-ion magnets to sheet-like copper(II) weak antiferromagnets. Polyhedron 171: 203-211
Carty, A.J.; MacLaughlin, S.A.; Van Wagner, J.; Taylor, N.J. 1982: Structural versatility of Ru4 butterflies. the molecular structures of Ru4(CO)13(.mu.-PPh2)(.mu.-.eta.2-C.tplbond.C-t-Bu) and Ru4(CO)8(.mu.-PPh2)2(.mu.-.eta.2-C.tplbond.C-t-Bu)(.mu.3-.eta.2-C.tplbond.C-t-Bu)(Ph2PC.tplbond.C-t-Bu).1/2C6H14: clusters with almost planar metal frameworks. Organometallics 1(7): 1013-1015
Crisma, M.; Valle, G.; Bonora, G.M.; De Menego, E.; Toniolo, C.; Lelj, F.; Barone, V.; Fraternal, F. 1990: Structural versatility of peptides from C?,?-disubstituted glycines: Preferred conformation of the C?,?-diphenylglycine residue. Biopolymers 30(1-2): 1-11
Rodríguez-Martín, Y.; Hernández-Molina, M.; Delgado, F.S.; Pasán, J.; Ruiz-Pérez, C.; Sanchiz, J.; Lloret, F.; Julve, M. 2002: Structural versatility of the malonate ligand as a tool for crystal engineering in the design of molecular magnets. CrystEngComm 4(87): 522-535
González, M.T.; Zhao, X.; Manrique, D.Z.; Miguel, D.; Leary, E.; Gulcur, M.; Batsanov, A.S.; Rubio-Bollinger, G.; Lambert, C.J.; Bryce, M.R.; Agraït, N. 2014: Structural versus Electrical Functionalization of Oligo(phenylene ethynylene) Diamine Molecular Junctions. The Journal of Physical Chemistry C 118(37): 21655-21662
Cohen, J.K. 1991: Structural versus Functional Determinants of new York's Fiscal Policies towards Metropolitan Transportation, 1904–1990. Social Science History 15(2): 177-198
Bisio, F.; Moroni, R.; Canepa, M.; Mattera, L.; Bertacco, R.; Ciccacci, F. 1999: Structural versus Magnetic Properties at the Surface of Fe Films during Oxygen-Assisted Homoepitaxial Growth. Physical Review Letters 83(23): 4868-4871
van Koten, S.; Ortmann, A. 2013: Structural versus behavioral remedies in the deregulation of electricity markets: An experimental investigation motivated by policy concerns. European Economic Review 64: 256-265
Ben Rached, A.; Guionneau, P.; Lebraud, E.; Mhiri, T.; Elaoud, Z. 2017: Structural versus electrical properties of an organic-inorganic hybrid material based on sulfate. Journal of Physics and Chemistry of Solids 100: 25-32
Chong, S.; Ham, S. 2015: Structural versus energetic approaches for protein conformational entropy. Chemical Physics Letters 627: 90-95
Kucheva, Y.; Sander, R. 2017: Structural versus ethnic dimensions of housing segregation. Journal of Urban Affairs 40(3): 329-348
La Mar, G.N. 1967: Structural versus ligand field strength effects on covalency in pseudotetrahedral complexes of cobalt(II) and nickel(II) dihalides, as determined by proton magnetic resonance. Inorganic Chemistry 6(10): 1939-1941
Poghosyan, K.; Boldea, O. 2013: Structural versus matching estimation: Transmission mechanisms in Armenia. Economic Modelling 30: 136-148
Laiarinandrasana, L.; Selles, N.; Klinkova, O.; Morgeneyer, T.F.; Proudhon, H.; Helfen, L. 2016: Structural versus microstructural evolution of semi-crystalline polymers during necking under tension: Influence of the skin-core effects, the relative humidity and the strain rate. Polymer Testing 55: 297-309
Gupta, K.K.; Lawsonrid, C.L. 1999: Structural vibration analysis by a progressive simultaneous iteration method. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 455: 3415-3423
Qu, Y.; Su, J.; Hua, H.; Meng, G. 2017: Structural vibration and acoustic radiation of coupled propeller-shafting and submarine hull system due to propeller forces. Journal of Sound and Vibration 401: 76-93
Yousefi, S.M.; Heuer, R. 2008: Structural vibration control by means of nonlinear pendulum dampers. PAMM 8(1): 10361-10362
Xiang, P.; Nishitani, A. 2016: Structural vibration control with the implementation of a pendulum-type nontraditional tuned mass damper system. Journal of Vibration and Control 23(19): 3128-3146
Ren, B. 2016: Structural vibration quantification of micro wind turbine‐building system using a novel finite element analysis. The Journal of Engineering 8: 277-290
Shahabpoor, E.; Pavic, A.; Racic, V. 2017: Structural vibration serviceability: new design framework featuring human-structure interaction. Engineering Structures 136: 295-311
Chen, C. 2011: Structural vibration suppression by using neural classifier with genetic algorithm. International Journal of Machine Learning and Cybernetics 3(3): 215-221
Khan, A.; Ko, D.; Lim, S.C.; Kim, H.S. 2019: Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network. Composites Part B: Engineering 161: 586-594
Greif, R.; Mittendorf, S. 1976: Structural vibrations and fourier series. Journal of Sound and Vibration 48(1): 113-122
Vergniaud, J.; Guyot, M.; Lambert, M.; Schafer, F.; Ryan, S.; Hiermaier, S.; Taylor, E. 2008: Structural vibrations induced by HVi – Application to the Gaïa spacecraft. International Journal of Impact Engineering 35(12): 1836-1843
Nikolic-Ristanovic, V. 2008: Structural victimisation and trafficking in people in Serbia: Coping strategies and criminalisation risks. Temida 11(4): 5-21
Thomas, P. 2014: Structural view independence: a criterion for judging the objectivity of economic parameters measured by opinion survey. Measurement 47: 161-177
Johnson, K.; Drew, C.; Auerswald, C. 2019: Structural violence and food insecurity in the lives of formerly homeless young adults living in permanent supportive housing. Journal of Youth Studies 23(10): 1249-1272
Kabel, A.; Phillipson, R. 2020: Structural violence and hope in catastrophic times: from Camus' the Plague to Covid-19. Race-Class 62(4): 3-18
Commercio, M.E. 2017: Structural violence and horizontal inequalities: conflict in southern Kyrgyzstan. Politics, Groups, and Identities 6(4): 764-784
Gupta, A. 2013: Structural violence and politics. Economy and Society 42(4): 686-692
Kostelny, K.; Ondoro, K. 2016: Structural violence and the everyday stresses of internally displaced children in Somaliland and Puntland. Peace and Conflict: Journal of Peace Psychology 22(3): 226-235
Kozelsky, M. 2020: Structural violence in the confessional state: the creation of a Crimean diocese, 1768–1860. Canadian Slavonic Papers 62(3-4): 271-295
Zhang, Y.; Lan, P.C.; Ma, S. 2021: Structural visualization of ultrathin chiral porous metal-organic framework nanosheet. Matter 4(8): 2669-2671
Keane, M.P. 2010: Structural vs. atheoretic approaches to econometrics. Journal of Econometrics 156(1): 3-20
Gnangnon, S.K. 2013: Structural vulnerability and excessive public indebtedness in CFA Franc Zone countries. Economic Modelling 35: 816-832
Zhang, J.; Hu, F.; Wang, S.; Dai, Y.; Wang, Y. 2016: Structural vulnerability and intervention of high speed railway networks. Physica A: Statistical Mechanics and its Applications 462: 743-751
Novelo-Casanova, D.A.; Ponce-Pacheco, A.B.; Hernández-Hernández, A. 2021: Structural vulnerability maps for small communities- case studies: Unión Juárez and Motozintla, Chiapas; Huexca, Morelos; and Jolalpan, Puebla, Mexico. Natural Hazards 107(1): 991-1008
Murta, A.; Pinto, J.; Varum, H. 2011: Structural vulnerability of two traditional Portuguese timber structural systems. Engineering Failure Analysis 18(2): 776-782
Santos, R.B.; Lopes, C.G.; Novotny, A.A. 2017: Structural weight minimization under stress constraints and multiple loading. Mechanics Research Communications 81: 44-50
McNeill, W.A. 1971: Structural weight minimization using necessary and sufficient conditions. Journal of Optimization Theory and Applications 8(6): 454-466
Zhan, H.; Wu, C.; Deng, C.; Li, X.; Xie, Z.; Wang, C. 2019: Structural whiteness of the multi-component glaze dependence on amorphous photonic crystals. Frontiers of Materials Science 13(2): 206-215
Norton, J. 1980: Structural zeros in the modal matrix and its inverse. IEEE Transactions on Automatic Control 25(5): 980-981
Vanden Berghe, G. 1994: Structural zeros of Racah coefficients and exceptional Lie algebras. Journal of Mathematical Physics 35(1): 508-516
Dwivedi, R.; Jha, P.K.; Jha, P.A.; Kumar, P. 2015: Structural – Electrical property correlation in defect induced nanostructured off-stoichiometric bismuth ferrite: a defect analysis. Materials Chemistry and Physics 164: 15-22
Munro, O.Q.; Camp, G.L.; Carlton, L. 2009: Structural, 103 Rh NMR and DFT Studies of a Bis(phosphane)Rh IIi –Porphyrin Derivative. European Journal of Inorganic Chemistry 17: 2512-2523
Akther Hossain, A.; Khirul Kabir, K.; Seki, M.; Kawai, T.; Tabata, H. 2007: Structural, AC, and DC magnetic properties of Zn1−x Cox Fe2O4. Journal of Physics and Chemistry of Solids 68(10): 1933-1939
Khouzami, R.; Coudurier, G.; Mentzen, B.; Vedrine, J. 1988: Structural, Acidic and Catalytic Properties of SAPO-11 Molecular Sieves. Studies in Surface Science and Catalysis: 355-363
de Oliveira, M.C.L.; Correa, O.V.; da Silva, R.M.P.; de Lima, N.B.; de Oliveira, J.T.D.; de Oliveira, L.A.; Antunes, R.A. 2019: Structural, Adhesion and Electrochemical Characterization of Electroless Plated Ni-P-Carbon Black Composite Films on APi 5L X80 Steel. Journal of Materials Engineering and Performance 28(8): 4751-4761
Lahewil, A.S.; Al-Douri, Y.; Hashim, U.; Ahmed, N. 2013: Structural, Analysis and Optical Studies of Cadmium Sulfide Nanostructured. Procedia Engineering 53: 217-224
Gökce, H.; Alpaslan, G.; Kaya, S.; Çakır, N. 2021: Structural, Bioactivity, Molecular Docking, Spectroscopic and Electronic Properties of a Synthesized Meldrum's Acid Derivative. ChemistrySelect 6(19): 4698-4718
Claves, D.; Giraudet, J.; Hamwi, A.; Benoit, R. 2001: Structural, Bonding, and Electrochemical Properties of Perfluorinated Fullerene C70. The Journal of Physical Chemistry B 105(9): 1739-1742
Sahu, M.; Hajra, S.; Choudhary, R.N.P. 2019: Structural, Bulk Permittivity, and Magnetic Properties of Lead-Free Electronic Material: Ba1Bi1Cu1Fe1Ni1Ti3O12. Journal of Superconductivity and Novel Magnetism 32(8): 2613-2621
Goodman, D.W.; Stuve, E.M. 1988: Structural, Catalytic, Electronic, and Electrochemical Properties of Strained-Copper Overlayers on Ruthenium(0001). ACS Symposium Series: 154-165
Hafeez, R.; Murtaza, G.; Khenata, R.; Mun Wong, K.; Naeem, S.; Khalid, M.; Alahmed, Z.; Bin Omran, S. 2015: Structural, Chemical Bonding, Electronic and Magnetic Properties of XY3(X = Al, Ga and y = V, Nb, Cr, Mo) Compounds. Acta Physica Polonica A 127(3): 770-779
Uma, M.; Balaram, N.; Sekhar Reddy, P.R.; Janardhanam, V.; Rajagopal Reddy, V.; Yun, H.; Lee, S.; Choi, C. 2019: Structural, Chemical and Electrical Properties of Au/La2O3/n-Ga N MIS Junction with a High-k Lanthanum Oxide Insulating Layer. Journal of Electronic Materials 48(7): 4217-4225
Bals, S.; Aert, S V.; Verbeeck, J.; Tendeloo, G V. 2007: Structural, Chemical and Electronic Characterization of Ceramic Materials Using Quantitative (Scanning) Transmission Electron Microscopy. Microscopy and Microanalysis 13(S 03): 332-333
Kweon, K.E.; Varley, J.B.; Shea, P.; Adelstein, N.; Mehta, P.; Heo, T.W.; Udovic, T.J.; Stavila, V.; Wood, B.C. 2017: Structural, Chemical, and Dynamical Frustration: Origins of Superionic Conductivity in closo-Borate Solid Electrolytes. Chemistry of Materials 29(21): 9142-9153
Park, K.; Choi, J.; Sung, Y. 2003: Structural, Chemical, and Electronic Properties of Pt/Ni Thin Film Electrodes for Methanol Electrooxidation. The Journal of Physical Chemistry B 107(24): 5851-5856
Jalili, H.; Chen, Y.; Yildiz, B. 2019: Structural, Chemical, and Electronic State on La0.7Sr0.3Mn O3 Dense Thin-Film Surfaces at High Temperature: Surface Segregation. ECS Transactions 28(11): 235-240
Zdetsis, A.D. 2011: Structural, Cohesive, Electronic, and Aromatic Properties of Selected Fully and Partially Hydrogenated Carbon Fullerenes. The Journal of Physical Chemistry C 115(30): 14507-14516
Soundararajan, D.; Mangalaraj, D.; Nataraj, D.; Dorosinskii, L.; Santoyo-Salazar, J.; Senthil, K.; Ko, J.M. 2011: Structural, Compositional and Magnetic Studies on Zn1−x Crx Te (x = 0.05, 0.15) Films Grown on Ga as (100) Substrates. Science of Advanced Materials 3(1): 80-88
Blass, B.L.; Hernández Sánchez, R.; Decker, V.A.; Robinson, M.J.; Piro, N.A.; Kassel, W.S.; Diaconescu, P.L.; Nataro, C. 2016: Structural, Computational, and Spectroscopic Investigation of [Pd(κ3-1,1′-bis(di-tert-butylphosphino)ferrocenediyl)X]+ (X = Cl, Br, I) Compounds. Organometallics 35(4): 462-470
Xu, H.; Shanthi, G.; Bharti, V.; Zhang, Q.M.; Ramotowski, T. 2000: Structural, Conformational, and Polarization Changes of Poly(vinylidene fluoride−trifluoroethylene) Copolymer Induced by High-Energy Electron Irradiation. Macromolecules 33(11): 4125-4131
Prakash, R.; Jayaganthan;Davinder Kaur, R. 2016: Structural, Corrosion and Mechanical Properties of Sputtered Deposited Chromium Tungsten Nitride (Cr1-x Wx N) Nanocomposite Thin Films. Advanced Materials Letters 7(9): 723-729
Samsudin, N.M.; Hisam, R.; Yahya, A.K. 2021: Structural, DC conductivity and elastic properties of (80-x)B2O3-x Te O2-10Li2O-10Al2O3 mixed glass former. Ionics 27(2): 619-634
Yousef, T.; Alduaij, O.; Ahmed, S.F.; Abu El-Reash, G.; El-Gammal, O. 2016: Structural, DFT and biological studies on Cr(III) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazide. Journal of Molecular Structure 1125: 788-799
Al-Hossainy, A.F.; Eid, M.R.; Zoromba, M.S. 2019: Structural, DFT, optical dispersion characteristics of novel [DPPA-Zn-MR(Cl)(H2O)] nanostructured thin films. Materials Chemistry and Physics 232: 180-192
Shah, M.; Hossain, A.A. 2013: Structural, Dielectric and Complex Impedance Spectroscopy Studies of Lead Free Ca0.5+x Nd0.5−x(Ti0.5Fe0.5)O3. Journal of Materials Science-Technology 29(4): 323-329
Rawat, M.; L. Yadav, K.; Kumar, A.; Kumar Patel, P.; Adhlakha, N.; Rani, J. 2012: Structural, Dielectric and Conductivity Properties of Ba2+ doped (Bi0.5Na0.5)Ti O3 ceramic . Advanced Materials Letters 3(4): 286-292
Mubasher; Mumtaz, M.; Ali, M. 2021: Structural, Dielectric and Electric Modulus Studies of Mn Fe2O4/(MWCNTs)x Nanocomposites. Journal of Materials Engineering and Performance 30(6): 4494-4503
Gupta, P.; Mahapatra, P.K.; Choudhary, R.N.P. 2018: Structural, Dielectric and Electrical Characteristics of Lead-Free Ferroelectric Ceramic: Bi2Sm Ti VO9. Journal of Electronic Materials 47(9): 5458-5467
Padal, N.T.; Pawar, S.A.; Kolekar, Y.D.; Kulkarni, S.V.; Joshi, P.B. 2005: Structural, Dielectric and Electron Transport Properties of la Fe O3Substituted (Pb Ba)Ti O3Ferroelectrics. Ferroelectrics 323(1): 123-129
Mendes, R.G.; Bacichetti, A.L.; Mir, M.; Lima, N.B.; Mascarenhas, Y.P.; Eiras, J.A. 2006: Structural, Dielectric and Ferroelectric Properties of Mixed Texture Pb Zr0.20Ti0.80O3Thin Films Prepared by a Chemical Method. Ferroelectrics 335(1): 249-255
L. Yadava, K. 2010: Structural, Dielectric and Ferroelectric Properties of Y3+ Doped PZT (65/35). Advanced Materials Letters 1(3): 259-263
Chopra, S.; Sharma, S.; Goel, T.C.; Mendiratta, R.G. 2005: Structural, Dielectric and Ferroelectric Properties of la Doped Pb Ti O3Sol Gel Derived Thin Films. Ferroelectrics 327(1): 97-101
Behera, C.; Choudhary, R.N.P.; Das, P.R. 2014: Structural, Dielectric and Impedance Spectroscopy of (Bi0.30La0.20Ba0.5)(Fe0.5Ti0.5)O3. Advanced Science Letters 20(3): 626-630
Cho, J.H.; Lee, S.C.; Yeo, H.G.; Sung, Y.S.; Kim, M.; Song, T.K.; Kim, S.S.; Choi, B.C. 2010: Structural, Dielectric and Leakage Current Behaviors of Ti-Substituted Bi Fe O3Ceramics. Ferroelectrics 410(1): 16-21
and K.L. Yadav, M.; Yadav, M. 2014: Structural, Dielectric and Magnetic Properties of 0.3Co Fe2O4-0.7Ba Ti O3-PVDF Composite Film. Advanced Materials Letters 5(11): 652-657
P. Singh, V.; Kumar, G.; Dhiman, P.; K. Kotnala, R.; Shah, J.; M. Batoo, K.; Singh, M. 2014: Structural, Dielectric and Magnetic Properties of Nanocrystalline Ba Fe12O19 Hexaferrite Processed Via Sol-gel Technique. Advanced Materials Letters 5(8): 447-452
Shah, S.M.H.; Riaz, S.; Atiq, S.; Naseem, S. 2015: Structural, Dielectric and Magnetic Properties of Potassium Doped Bismuth Iron Oxide Thin Films. Materials Today: Proceedings 2(10): 5736-5742
Priyadarshini, S.; Patnaik, D.; Nanda, J.; Mishra, D.K. 2016: Structural, Dielectric and Magnetic Studies on Sol–Gel Synthesized (x)Mn0.5Zn0.5Fe2O4-(1–x)Bi Fe O3 Composite. Advanced Science Letters 22(2): 388-391
Padhee, R.; Das, P.R.; Parida, B.N.; Choudhary, R.N.P. 2012: Structural, Dielectric and Pyroelectric Properties of Praseodymium Based Complex Tungsten Bronze Ferroelectrics. Ferroelectrics 437(1): 160-170
Nanda, D.; Kumar, P.; Samanta, B.; Sahu, R.; Singh, A. 2019: Structural, Dielectric, Ferroelectric and Magnetic Properties of (BNT-BT)-NCZF Composites Synthesized by a Microwave-Assisted Solid-State Reaction Route. Journal of Electronic Materials 48(8): 5039-5047
and K. L. Yadav, M.; L. Yadav, M. 2015: Structural, Dielectric, Magnetic and Magnetoelectric Characterization of Co0.5Ni0.5Fe2O4 - Bi0.9La0.1Fe O3 Composite. Advanced Materials Letters 6(10): 853-861
Panda, N.; Pattanayak, S.; Choudhary, R.N.P. 2015: Structural, Dielectric, and Electrical Properties of Bi1−x Pb x Fe1−x (Zr0.5Ti0.5) x O3. Journal of Electronic Materials 44(12): 4794-4803
Wu, G.; Zhou, H.; Zhou, X.; Qin, N.; Bao, D. 2010: Structural, Dielectric, and Ferroelectric Properties of Bi Al O3-Pb Ti O3Solid Solution Thin Films on Indium Tin Oxide-Coated Glass Substrates. Journal of the American Ceramic Society 93(4): 925-927
Khan, K.; Maqsood, A.; Anis-ur-Rehman, M.; Malik, M.A.; Akram, M. 2011: Structural, Dielectric, and Magnetic Characterization of Nanocrystalline Ni–Co Ferrites. Journal of Superconductivity and Novel Magnetism 25(8): 2707-2711
Liu, H.; Liu, S.; Zenou, V.Y.; Beach, C.; Newman, N. 2006: Structural, Dielectric, and Optical Properties of Ni-Doped Barium Cadmium Tantalate Ceramics. Japanese Journal of Applied Physics 45(12): 9140-9142
Liu, W.; Wang, G.; Cao, S.; Mao, C.; Dong, X. 2010: Structural, Dielectric, and Pyroelectric Properties of (1−x)Pb Sc0.5Ta0.5O3-(x)Pb Hf O3 Ceramics. Journal of the American Ceramic Society 93(10): 3023-3026
Varghese, J.; Siponkoski, T.; Teirikangas, M.; Sebastian, M.T.; Uusimäki, A.; Jantunen, H. 2016: Structural, Dielectric, and Thermal Properties of Pb Free Molybdate Based Ultralow Temperature Glass. ACS Sustainable Chemistry-Engineering 4(7): 3897-3904
Baboo, M.; Sharma, K.; Saxena, N. S. 2016: Structural, Dynamic Mechanical, Mechanical and Thermal Analysis of Cis-Polyisoprene and Styrene-Butadiene Rubber Blends. Advanced Science Letters 22(11): 3733-3737
Otter, P.W. 1988: Structural, Dynamic Modelling in Unobservable Spaces of Covariance-Stationary Stochastic Processes. Journal of Time Series Analysis 9(1): 59-72
Snaathorst, D.; Doesburg, H.M.; Perenboom, J.A.A.J.; Keijzers, C.P. 1981: Structural, EPR and magnetic studies of a nonplanar copper(II) maleonitriledithiolate complex. Inorganic Chemistry 20(8): 2526-2532
Bonamartini-Corradi, A.; Battaglia, L.P.; Rubenacker, J.; Willett, R.D.; Grigereit, T.E.; Zhou, P.; Drumheller, J.E. 1992: Structural, EPR, and magnetic characterization of bis(piperazinium) hexachlorocuprate-methanol and bis(1-methylpiperazinium) hexachlorocuprate. Inorganic Chemistry 31(18): 3859-3863
El-Rehim, A.F.A.; Zahran, H.Y.; Yahia, I.S.; Wahab, E.A.A.; Shaaban, K. 2021: Structural, Elastic Moduli, and Radiation Shielding of Si O2-Ti O2-La2O3-Na2O Glasses Containing Y2O3. Journal of Materials Engineering and Performance 30(3): 1872-1884
Mahmood, W. 2015: Structural, Elastic and Optical Properties of Ag-Doped Rutile Ti O2. Advanced Materials Research 1101: 66-69
Bougherara, K.; Litimein, F.; Khenata, R.; Uçgun, E.; Ocak, H.Y.; Uğur, .; Uğur, G.; Reshak, A.; Soyalp, F.; Omran, S.B. 2013: Structural, Elastic, Electronic and Optical Properties of Cu3TMSe4 (TM = V, Nb and Ta) Sulvanite Compounds via First-Principles Calculations. Science of Advanced Materials 5(1): 97-106
Lei, G.; Ge, H.; Wen-Jiang, F.; Sheng-Tao, Z. 2013: Structural, Elastic, Electronic and Optical Properties of Zinc-Blende MTe (M=Zn/Mg). Acta Physico-Chimica Sinica 29(05): 929-936
Boudiaf, K.; Bouhemadou, A.; Boudrifa, O.; Haddadi, K.; Saoud, F.S.; Khenata, R.; Al-Douri, Y.; Bin-Omran, S.; Ghebouli, M.A. 2017: Structural, Elastic, Electronic and Optical Properties of la OAg S-Type Silver Fluoride Chalcogenides: First-Principles Study. Journal of Electronic Materials 46(7): 4539-4556
Jain, V.K.; Lakshmi, N.; Jain, R.; Jain, A. 2021: Structural, Elastic, Electronic, Magnetic and Optical Properties of Spin Gapless Semiconducting Heusler Alloy Ti2Fe Sb Using First-Principles Calculations. Journal of Electronic Materials 50(10): 5857-5867
Boudali, A.; Mostefa, Z.; Saadaoui, F.; khodja, M.d. 2016: Structural, Elastic, Electronic, and Ferromagnetic Properties of the Alloys Ga 1 / 2 Cr 1 / 2 as. Journal of Superconductivity and Novel Magnetism 29(9): 2337-2343
Touia, A.; Khobzaoui, C.; Benkhaled, M.; Fodil, M. 2021: Structural, Elastic, Electronic, and Magnetic Properties of XPt Bi (X=Er and Ho) Using FP-LAPW Method. Journal of Superconductivity and Novel Magnetism 34(7): 1865-1873
Wan, H.; Yao, W.; Zeng, D.; Zhou, J.; Ruan, W.; Liu, L.; Wen, Y. 2019: Structural, Elastic, Electronic, and Magnetic Properties of a new Full-Heusler Alloy Mn2Mg Ge: First-Principles Calculations. Journal of Superconductivity and Novel Magnetism 32(9): 3001-3008
Boudali, A.; Zemouli, M.; Saadaoui, F.; Khodja, M.D. 2016: Structural, Elastic, Electronic, and Magnetic Properties of the Full-Heusler Compounds Ti2Ni X (X= Al, Ga, and In). Journal of Superconductivity and Novel Magnetism 30(1): 15-23
Ephraim Babu, K.; Murali, N.; Vijaya Babu, K.; Taddesse Shibeshi, P.; Veeraiah, V. 2014: Structural, Elastic, Electronic, and Optical Properties of Cubic Perovskite Cs Ca Cl3Compound: An ab initio Study. Acta Physica Polonica A 125(5): 1179-1185
Khelfaoui, F.; Ameri, M.; Bensaid, D.; Ameri, I.; Al-Douri, Y. 2018: Structural, Elastic, Thermodynamic, Electronic, and Magnetic Investigations of Full-Heusler Compound Ag2Ce Al: FP-LAPW Method. Journal of Superconductivity and Novel Magnetism 31(10): 3183-3192
Oualdine, A.; Bentouaf, A.; Chebli, A.; Nouamane, B.; Bouyakoub, A.Z.; Aïssa, B. 2018: Structural, Elastic, and Electronic Properties of Ce N and Lu N Using: Ab Initio Study. Journal of Superconductivity and Novel Magnetism 31(10): 3323-3330
Fricke, J.; Caps, R.; Büttner, D.; Heinemann, U.; Hümmer, E.; Reichenauer, G. 1988: Structural, Elasto-Mechan Ical and Thermal Properties of Silica Aerogels. Characterization of Porous Solids, Proceedings of the IUPAC Symposium (COPS I), Bad Soden a. Ts.: 629-634
Özkurt, B. 2017: Structural, Electric and Magnetic Properties of Bi2Sr2Ag 0 . 0 3 Ca1Cu2O y Ceramics Modified by Post-annealing. Journal of Superconductivity and Novel Magnetism 31(8): 2459-2464
Rathi, R.; Neogi, R. 2016: Structural, Electric and magnetic properties of Titanium doped Ni-Cu-Zn Ferrite. Materials Today: Proceedings 3(6): 2437-2442
Irfan, M.; Shakoor, A. 2019: Structural, Electrical and Dielectric Properties of Dodecylbenzene Sulphonic Acid Doped Polypyrrole/Nano-Y2O3 Composites. Journal of Inorganic and Organometallic Polymers and Materials 30(4): 1287-1292
Ajmal, M.; Islam, M.U.; Ali, A. 2017: Structural, Electrical and Dielectric Properties of Hexa-ferrite-Polyaniline Nano-composites. Journal of Superconductivity and Novel Magnetism 31(5): 1375-1382
Ali, H.; Islam, M.U.; Ali, I.; Ashiq, M.N.; Ramay, S.M.; Mahmood, A. 2017: Structural, Electrical and Dielectric Properties of Li-Ni Ferrite–Polystyrene Thin Film Nano-Composites. Journal of Electronic Materials 46(8): 5039-5045
Kondaiah, P.; Madhavi, V.; Sekhar, C.M.; Rao, M.G.; Uthanna, S. 2013: Structural, Electrical and Dielectric Properties of Sputtered Ti O2 Films for Al/Ti O2/Si Capacitors. Science of Advanced Materials 5(4): 398-405
Tahri, T.; Omri, A.; Hamdaoui, N.; Benali, A.; Hcini, S.; Gammoudi, I.; Dhahri, E.; Chaabouni, S. 2019: Structural, Electrical and Dielectric of Fe-Doped Ca Mn1−x Fex O3−0.5x (x = 0.0 and 0.20). Journal of Low Temperature Physics 195(1-2): 230-251
Khirade, P.P.; Birajdar, S.D.; Humbe, A.V.; Jadhav, K.M. 2016: Structural, Electrical and Dielectrical Property Investigations of Fe-Doped Ba Zr O3 Nanoceramics. Journal of Electronic Materials 45(6): 3227-3235
Makhloufi, S.; Omari, M. 2015: Structural, Electrical and Electrochemical Characterizations of Perovskite Ni-Doped Sr Co O3−δ. Journal of Inorganic and Organometallic Polymers and Materials 26(1): 32-40
Zargar, R.A.; Pal, A.; Hafiz, A.K.; Awana, V.P.S. 2014: Structural, Electrical and Magnetic Behaviour of Fe Te0.5Se0.5 Superconductor. Journal of Superconductivity and Novel Magnetism 27(4): 897-901
Zhang, Y.; Zhang, D.; Chen, T.; Gan, Y.; Yang, S. 2015: Structural, Electrical and Magnetic Properties of (1-x)Bi0.9La0.1Fe O3-x Ba0.85Ca0.15Zr0.1Ti0.9O3Ceramics. Ferroelectrics 489(1): 96-102
Shanta, F.S.; Atique Ullah, A.K.M.; Kabir, M.F.; Tamanna, A.N.; Akter, M.; Hasan, M.R.; Rahman, M.M.; Islam, R.; Khan, M.N.I. 2018: Structural, Electrical and Magnetic Properties of Ba1−x Alx Ti0.5Mn0.5O3 (x = 0.0–0.3) Perovskites. Journal of Inorganic and Organometallic Polymers and Materials 28(6): 2447-2454
Pattanayak, S.; Choudhary, R.N.P.; Das, P.R. 2014: Structural, Electrical and Magnetic Properties of Bi0.75Dy0.25Fe O3 Ceramics. Advanced Science Letters 20(3): 654-659
Riaz, S.; Akbar, A.; Naseem, S. 2013: Structural, Electrical and Magnetic Properties of Iron Oxide Thin Films. Advanced Science Letters 19(3): 828-833
Ardelean, I.; Barbur, I.; Timar, V.; Borodi, G. 2003: Structural, Electrical and Magnetic Properties of Pb2Mg1-x Cox WO6 Solid Solutions. Modern Physics Letters B 17(20n 21): 1135-1141
Stoch, A.; Kulawik, J.; Stoch, P.; Maurin, J.; Zachariasz, P. 2008: Structural, Electrical and Mössbauer Effect Studies of 0.5Bi0.95Dy0.05Fe O3- 0.5Pb(Fe0.5Nb0.5)O3Multiferroics. Acta Physica Polonica A 114(6): 1585-1590
Alkhammash, H.; El-Ghanny, H.A.; El-Raheem, M.M.A. 2018: Structural, Electrical and Optical Characteristics of Zn100–x Cdx O Thin Films. OALib 05(08): 1-12
Kahlout, A.A.; Dahoudi, N.A.; Heusing, S.; Moh, K.; Karos, R.; de Oliveira, P.W. 2014: Structural, Electrical and Optical Properties of Aluminum Doped Zinc Oxide Spin Coated Films Made Using Different Coating Sols. Nanoscience and Nanotechnology Letters 6(1): 37-43
Kim, J.H.; Park, D.S.; Yu, J.H.; Jeong, T.S.; Youn, C.J.; Hong, K.J. 2008: Structural, Electrical and Optical Properties of Epitaxial Zn O Layers Grown with Various O2 Flows by Radio-Frequency Magnetron Sputtering. Journal of the Korean Physical Society 52(6): 1818-1822
Subba Reddy, R.; Radhamma, K.; Sivasankar Reddy, A.; Uthanna, S. 2015: Structural, Electrical and Optical Properties of Molybdenum Doped Zinc Oxide Films Formed by Magnetron Sputtering. Advanced Materials Letters 6(9): 834-839
El-Hachemi, B.; Miloud, S.; Sabah, M.; Souad, T.; Zineddine, O.; Boubekeur, B.; Toufik, S.M.; Ouahiba, H. 2021: Structural, Electrical and Optical Properties of PVC/Zn Te Nanocomposite Thin Films. Journal of Inorganic and Organometallic Polymers and Materials 31(9): 3637-3648
Bashir, U.; Hassan, Z.; Ahmed, N.M.; Afzal, N. 2018: Structural, Electrical and Optical Properties of Sputtered-Grown in N Films on Zn O Buffered Silicon, Bulk Ga N, Quartz and Sapphire Substrates. Journal of Electronic Materials 47(8): 4875-4881
Prashant, B.L.; Dolia, S.N.; Singhal, R.K.; Kumar, S. 2018: Structural, Electrical and Optical Properties of Zn0.94Mn0.04Li0.02O Nanocrystals. Advanced Science, Engineering and Medicine 10(10): 1038-1040
Ni, J.M.; Zhao, X.J.; Zhao, J. 2011: Structural, Electrical and Optical Properties of p-Type Transparent Conducting Sn O2:Zn Film. Journal of Inorganic and Organometallic Polymers and Materials 22(1): 21-26
Raut, A.V.; Khirade, P.P.; Humbe, A.; Jadhav, S.A.; Shengule, D.R. 2016: Structural, Electrical, Dielectric and Magnetic Properties of Al3+ Substituted Ni-Zn Ferrite. Journal of Superconductivity and Novel Magnetism 29(5): 1331-1337
Mustafa, L.; Anjum, S.; Waseem, S.; Khurshid, H.; Javed, S. 2015: Structural, Electrical, Optical and Magnetic Properties of Zn0.9Co0.1O, Zn0.9Ni0.1O, Zn0.9Co0.06Ni0.04O. Materials Today: Proceedings 2(10): 5638-5644
Smitha, M.G.; Murugendrappa, M.V. 2019: Structural, Electrical, Thermal and Transport Properties of Poly Pyrrole/La0.7Ca0.3Mn O3 Perovskite Manganite Nano Composite Studies Above Room Temperature. Journal of Inorganic and Organometallic Polymers and Materials 30(3): 841-858
Pattipaka, S.; Bora, S.; Pamu, D. 2020: Structural, Electrical, and AC-Resistivity Studies of BNT-KN Piezoelectric Ceramics. Ferroelectrics 557(1): 28-42
Nagaraja, B.S.; Rao, A.; Okram, G.S. 2014: Structural, Electrical, and Colossal Thermoelectric Properties of Dy1−x Sr x Mn O3 Manganites. Journal of Superconductivity and Novel Magnetism 28(1): 223-229
Nazir, M.A.; Ul-Islam, M.; Ali, I.; Ali, H.; Ahmad, B.; Ramay, S.M.; Raza, N.; Ehsan, M.F.; Ashiq, M.N. 2015: Structural, Electrical, and Dielectric Properties of Multiferroic–Spinel Ferrite Composites. Journal of Electronic Materials 45(2): 1065-1072
Jeong, D.; Jun, A.; Ju, Y.; Hyodo, J.; Shin, J.; Ishihara, T.; Lim, T.; Kim, G. 2017: Structural, Electrical, and Electrochemical Characteristics of Ln Ba0.5 Sr0.5 Co1.5 Fe0.5 O5+δ (Ln=Pr, Sm, Gd) as Cathode Materials in Intermediate-Temperature Solid Oxide Fuel Cells. Energy Technology 5(8): 1337-1343
Abarna, S.; Sudha Periathai, R.; Pon Vengatesh, R.; Prithivikumaran, N. 2020: Structural, Electrical, and Electrochemical Characterization of Li1.2Ni0.6−x Mgx Co0.3O2 Cathode Materials for Application in Lithium-Ion Batteries. Journal of Electronic Materials 49(11): 6622-6630
Raghavan, C.M.; Kim, J.W.; Kim, S.S. 2015: Structural, Electrical, and Ferroelectric Properties of Nb-Doped Na0.5 Bi4.5 Ti4 O15 Thin Films. Journal of the American Ceramic Society 98(10): 3153-3158
Parida, K.; Choudhary, R.N.P. 2020: Structural, Electrical, and Magnetic Characteristics of Chemically Synthesized Lead-Free Double Perovskite: Bi Mg Fe Ce O6. Journal of Superconductivity and Novel Magnetism 33(11): 3493-3500
Haq, A.; Tufail, M.; Anis-ur-Rehman, M. 2016: Structural, Electrical, and Magnetic Properties of Ba Fe12−x Pb x O 1 9 Hexaferrite. Journal of Superconductivity and Novel Magnetism 30(10): 2991-2995
Ajmal, M.; Islam, M. 2019: Structural, Electrical, and Magnetic Properties of Ferrite-Reinforced PANi Composites. Journal of Superconductivity and Novel Magnetism 32(9): 2871-2876
Aziz, B.; Shakoor, A.; Qureshi, A.K.; Ali, K.; Niaz, N.A.; Farid, M.T.; Ali, I. 2018: Structural, Electrical, and Magnetic Properties of Ferrite–Polymer Composites. Journal of Electronic Materials 47(11): 6437-6442
Irmak, A.E.; Taşarkuyu, E.; Coşkun, A.; Aktürk, S.; Dikmen, Z.; Orhun, . 2014: Structural, Electrical, and Magnetic Properties of High-Temperature-Sintered La1−x Na x Mn O3 (0.05 ≤ x ≤ 0.35) Compounds. Journal of Electronic Materials 44(1): 326-331
Rout, J.; Choudhary, R.N.P.; Shannigrahi, S.R.; Sharma, H.B. 2015: Structural, Electrical, and Magnetic Properties of Mechanosynthesized (1−x)Bi Fe O3-x Ba Mn O3 (0 ≤ x ≤ 0.15) Multiferroic System. Journal of Electronic Materials 44(10): 3811-3818
Naito, T.; Inabe, T. 2004: Structural, Electrical, and Magnetic Properties of α-(ET)7[Mn Cl4]2·(1,1,2-C2H3Cl3)2(ET = Bis(ethylenedithio)tetrathiafulvalene). Bulletin of the Chemical Society of Japan 77(11): 1987-1995
Shin, J.; Cho, S. 2018: Structural, Electrical, and Optical Properties of Bismuth-doped Zinc-oxide Thin Films Grown by Radio-frequency Magnetron Sputtering. Journal of the Korean Physical Society 72(8): 943-946
Rickert, K.; Sedefoglu, N.; Malo, S.; Caignaert, V.; Kavak, H.; Poeppelmeier, K.R. 2015: Structural, Electrical, and Optical Properties of the Tetragonal, Fluorite-Related Zn0.456In1.084Ge0.460O3. Chemistry of Materials 27(14): 5072-5079
Bourdo, S.; Li, Z.; Biris, A.S.; Watanabe, F.; Viswanathan, T.; Pavel, I. 2008: Structural, Electrical, and Thermal Behavior of Graphite-Polyaniline Composites with Increased Crystallinity. Advanced Functional Materials 18(3): 432-440
Sharma, S.; Bayer, B.C.; Skakalova, V.; Singh, G.; Periasamy, C. 2016: Structural, Electrical, and UV Detection Properties of Zn O/Si Heterojunction Diodes. IEEE Transactions on Electron Devices 63(5): 1949-1956
Jayamani, A.; Thamilarasan, V.; Ganesan, V.; Sengottuvelan, N. 2013: Structural, Electrochemical, DNA Binding and Cleavage Properties of Nickel(II) Complex [Ni(H2biim)2(H2O)2]2+of 2,2'-Biimidazole. Bulletin of the Korean Chemical Society 34(12): 3695-3702
Hettmanczyk, L.; Spall, S.J.P.; Klenk, S.; van der Meer, M.; Hohloch, S.; Weinstein, J.A.; Sarkar, B. 2017: Structural, Electrochemical, and Photochemical Properties of Mono‐ and Digold(I) Complexes Containing Mesoionic Carbenes. European Journal of Inorganic Chemistry 14: 2112-2121
Bendix, J.; Dmochowski, I.; Gray, H.; Mahammed, A.; Simkhovich, L.; Gross, Z. 2000: Structural, Electrochemical, and Photophysical Properties of Gallium(III) 5,10,15-Tris(pentafluorophenyl)corrole. Angewandte Chemie 112(22): 4214-4217
Cecchet, F.; Rudolf, P.; Rapino, S.; Margotti, M.; Paolucci, F.; Baggerman, J.; Brouwer, A.M.; Kay, E.R.; Wong, J.K.Y.; Leigh, D.A. 2004: Structural, Electrochemical, and Photophysical Properties of a Molecular Shuttle Attached to an Acid-Terminated Self-Assembled Monolayer. The Journal of Physical Chemistry B 108(39): 15192-15199
Renner, M.W.; Bochot, C.; Héroux, A.; Mansuy, D.; Battioni, P. 2007: Structural, Electrochemical, and Spectroscopic Properties of a Class of Dodecasubstituted Iron Porphyrins Bearing Four Positive Charges Close to the Metal. European Journal of Inorganic Chemistry 17: 2426-2433
Ma, X.; Starke, K.; Schulzke, C.; Schmidt, H.; Noltemeyer, M. 2006: Structural, Electrochemical, and Theoretical Investigations of new Thio‐ and Selenoether Complexes of Molybdenum and Tungsten. European Journal of Inorganic Chemistry 3: 628-637
Zhang, N.; Li, J.; Li, H.; Liu, A.; Huang, Q.; Ma, L.; Li, Y.; Dahn, J.R. 2018: Structural, Electrochemical, and Thermal Properties of Nickel-Rich Li Nix Mny Coz O2 Materials. Chemistry of Materials 30(24): 8852-8860
Water, W.; Fang, T.; Hsiao, Y.; Ji, L.; Tsai, J.; Lee, C. 2011: Structural, Electromechanical and Optical Characterization of Zn O Nanorods. Nanoscience and Nanotechnology Letters 3(4): 468-471
Zhang, J.; Han, M.; Ao, L.; Yang, J.; Gao, L.; Jiang, K.; Shang, L.; Zhang, J.; Li, Y.; Hu, Z.; Chu, J. 2021: Structural, Electronic Band Transition and Optoelectronic Properties of p-Type Transparent Conductive Cu Cr1–x Nix O2 Semiconductor Films. The Journal of Physical Chemistry C 125(47): 26139-26149
Srivastava, A.K.; Pandey, A.K.; Pandey, S.; Misra, N. 2015: Structural, Electronic Properties, Hydrogen Bonding Analyses, and Biological Activity of two Multiple Myeloma Drugs: Lenalidomide and Pomalidomide. Polycyclic Aromatic Compounds 36(4): 452-466
Gaur, D.; Sharma, S.; Sharma, A.; Sharma, D.K.; Shukla, S. 2021: Structural, Electronic Structure, and Photovoltaic Studies of Mg O/Ti O2/ITO Heterostructures. Journal of Electronic Materials 51(1): 314-320
Kagdada, H.L.; Trivedi, H.J.; Pillai, S.B.; Som, N.N.; Jha, P.K. 2016: Structural, Electronic and Dynamical Properties of Binary Alloy Zr-Al Using Density Functional Theory. Advanced Materials Research 1141: 204-209
Roondhe, B.; Upadhyay, D.; Som, N.; Pillai, S.B.; Shinde, S.; Jha, P.K. 2017: Structural, Electronic and Dynamical Properties of Curium Monopnictides: Density Functional Calculations. Journal of Electronic Materials 46(3): 1842-1848
Zitouni, A.; Benstaali, W.; Abbad, A.; Lantri, T.; Bouadjemi, B.; Aziz, Z. 2018: Structural, Electronic and Elastic Properties of Half-Heusler Alloys Cr Ni Z (Z = Al, Si, Ge and As). Journal of the Korean Physical Society 72(11): 1337-1342
Djellab, S.; Bouhadda, Y.; Bououdina, M.; Fenineche, N.; Boudouma, Y. 2016: Structural, Electronic and Elastic Properties of Mg H2, Ca H2 and Ca4Mg3H14 for Hydrogen Storage Materials. Journal of Electronic Materials 45(8): 3935-3942
Makode, C.; Aynyas, M.; Pataiya, J.; Singh, A.; Sanyal, S.P. 2016: Structural, Electronic and Elastic Properties of Neptunium Bismuthide (Np Bi). Advanced Materials Research 1141: 180-183
Acharya, N.; Fatima, B.; Chouhan, S.S.; Sanyal, S.P. 2013: Structural, Electronic and Elastic Properties of Palladium Nitride. Advanced Materials Research 665: 58-62
Sheng, F.; Xu, C.; Guo, J.; Zhu, G.; Chen, Q. 2011: Structural, Electronic and Infrared Spectral Properties of Zn O Hexagonal Nanodisks with Different Saturate Conditions. Science of Advanced Materials 3(5): 709-718
Kökten, H.; Üstünel, H.; Erkoç, . 2009: Structural, Electronic and Magnetic Properties of BN Nanotubes Doped with Mn and Cr: Exploring the Potential for Device Technology. Journal of Computational and Theoretical Nanoscience 6(4): 926-932
Safavi, M.; Moradi, M.; Rostami, M. 2016: Structural, Electronic and Magnetic Properties of Na KZ (Z = N, P, As, and Sb) Half-Heusler Compounds: a First-Principles study. Journal of Superconductivity and Novel Magnetism 30(4): 989-997
Izadi, S.; Nourbakhsh, Z. 2010: Structural, Electronic and Magnetic Properties of Nanolayer and Bulk of Mn Co2Si and Mn Fe Co Si Compounds. Journal of Superconductivity and Novel Magnetism 24(1-2): 825-831
Jing, N.; Zhang-Hui, L.; Jun, Y.; Tian, G.; Xiang-Shu, C. 2013: Structural, Electronic and Magnetic Properties of Tin O2 and Tin O2- (n=1-10) Clusters. Acta Physico-Chimica Sinica 29(07): 1433-1440
Qun, J.; Gui-Xian, G.; Hai-Bin, C.; Xu-Chu, H.; Xiao-Yong, L.; Hong-Xia, Y. 2010: Structural, Electronic and Magnetic Properties of the Gen Eu (n=1-13) Clusters. Acta Physico-Chimica Sinica 26(09): 2510-2514
Muthui, Z.W.; Musembi, R.J.; Mwabora, J.M.; Skomski, R.; Kashyap, A. 2018: Structural, Electronic and Magnetic Properties of the Heusler Alloy Mn2VIn: a Combined DFT and Experimental Study. IEEE Transactions on Magnetics 54(1): 1-5
Khalid, S.; Khenata, R.; Ma, Y.; Sun, X.; Gao, M.; Wu, H.; Lu, G.; Yang, Z. 2020: Structural, Electronic and Optical Characteristics of Hg Si X2 (X=P, As) Chalcopyrite Materials: a DFT-Based Computer Simulation. Journal of the Korean Physical Society 77(1): 72-77
Al-Bataineh, Q.M.; Alsaad, A.M.; Ahmad, A.A.; Al-Sawalmih, A. 2019: Structural, Electronic and Optical Characterization of Zn O Thin Film-Seeded Platforms for Zn O Nanostructures: Sol–Gel Method Versus Ab Initio Calculations. Journal of Electronic Materials 48(8): 5028-5038
Jiang, D.; Wu, M.; Liu, D.; Liu, S. 2020: Structural, Electronic and Optical Properties of Cubic Ca Cu3Ti4–x Agx O12 Perovskite Ceramics: a First-Principles Study. IEEE Access 8: 19230-19235
Liu, Q.J.; Liu, Z.T.; Feng, L.P.; Tian, H. 2011: Structural, Electronic and Optical Properties of High (γ)-Li2Be Si O4: First-Principles Calculations. Advanced Materials Research 197-198: 567-570
Anbarasan, R.; Srinivasan, M.; Kalyana Sundar, J.; Ramasamy, P. 2021: Structural, Electronic and Optical Properties of Inorganic Perovskite Cs Pb(1-x)Gex I3: a first Principle Approach. Materials Technology: 1-5
Ran, X.; Feng, J.; Wong, W.; Ren, A.; Zhou, G.; Sun, C. 2012: Structural, Electronic and Optical Properties of Multifunctional Iridium(III) and Platinum(II) Metallophosphors for Organic Light-Emitting Diodes. Chinese Journal of Chemistry 30(10): 2431-2439
ÇAliŞIr, E.D.; ErkoÇ, . 2006: Structural, Electronic and Qsar Properties of the Cyfluthrin Molecule: a Theoretical Am1 and Pm3 Treatment. International Journal of Modern Physics C 17(10): 1391-1402
Jiang, C.; Xie, R.; Li, F.; Zhong, W. 2009: Structural, Electronic and Spectroscopic Properties of C50 (D3) Derivatives: C50X12 (X = H, F, Cl, Br). Journal of Computational and Theoretical Nanoscience 6(2): 379-389
Jiang, C.; Xie, J.C.; Li, F.; Yang, P. 2013: Structural, Electronic and Spectroscopic Properties of C50X12 (Cs, X = H, F, Cl): which is more Stable than C50X12 (D3, X = H, F, Cl). Journal of Computational and Theoretical Nanoscience 10(9): 1928-1934
Jiang, C.; Xie, R.; Li, F.; Chen, Y. 2010: Structural, Electronic and Spectroscopic Properties of Non-IPR Fullerene C54 (C2v) and its Derivatives: C54X8 (X = H, F, Cl, Br). Journal of Computational and Theoretical Nanoscience 7(1): 182-198
Pandit, A.; Haleoot, R.; Hamad, B. 2019: Structural, Electronic and Thermoelectric Properties of Pb1−x Snx Te Alloys. Journal of Electronic Materials 49(1): 586-592
Cheng, J.; Lv, J.; Wu, H.S. 2018: Structural, Electronic and Tunable Magnetic Properties of Transition Metal Doped Rh8 Cluster from first Principles Calculation. Journal of Cluster Science 29(5): 921-932
Zhong, G.; Zhang, C.; Chen, X.; Li, Y.; Zhang, R.; Lin, H. 2012: Structural, Electronic, Dynamical, and Superconducting Properties in Dense Ge H4(H2)2. The Journal of Physical Chemistry C 116(8): 5225-5234
Fatima, B.; Chouhan, S.S.; Acharya, N.; Sanyal, S. 2014: Structural, Electronic, Elastic and Mechanical Properties of Sc Ni, Sc Pd and Sc Pt: a FP-LAPW Study. Advanced Materials Research 1047: 27-34
Mehmood, N.; Ahmad, R. 2017: Structural, Electronic, Magnetic and Optical Investigations of Half-Heusler Compounds YZSb (Z = Cr, Mn): FP-LAPW Method. Journal of Superconductivity and Novel Magnetism 31(3): 879-888
Forozani, G.; Karami AffstartaAffstop Authstop,, M. Moradi, F. 2020: Structural, Electronic, Magnetic and Vibrational Properties of Full-Heusler Ir2Cr X (X = Si, Ge) Compounds. Acta Physica Polonica A 137(3): 430-435
Bennani, M.A.; Aziz, Z.; Terkhi, S.; Elandaloussi, E.H.; Bouadjemi, B.; Chenine, D.; Benidris, M.; Youb, O.; Bentata, S. 2020: Structural, Electronic, Magnetic, Elastic, Thermodynamic, and Thermoelectric Properties of the Half-Heusler Rh Fe X (with X = Ge, Sn) Compounds. Journal of Superconductivity and Novel Magnetism 34(1): 211-225
Medina Chanduví, H.H.; Mudarra Navarro, A.M.; Bilovol, V.; Errico, L.A.; Gil Rebaza, A.V. 2021: Structural, Electronic, Magnetic, and Hyperfine Properties of V-doped Sn O2 (Sn1–x Vx O2, x: 0, 0.042, 0.084, and 0.125). a DFT-Based Study. The Journal of Physical Chemistry C 125(21): 11702-11713
Mennad, Y.; Bentouaf, A.; Cherif, H.S.; Baltache, H. 2021: Structural, Electronic, Magnetic, and Mechanical Properties of Ru2Cr Al Full Heusler with the 3d Transition Metal Elements: DFT Calculation. Journal of Superconductivity and Novel Magnetism 34(7): 1941-1948
Mehmood, N.; Ahmad, R. 2017: Structural, Electronic, Magnetic, and Optical Properties of Half-Heusler Alloys Ru Mn Z (Z = P, As): a First-Principle Study. Journal of Superconductivity and Novel Magnetism 31(1): 233-239
Forozani, G.; Karami, F.; Moradi, M. 2020: Structural, Electronic, Magnetic, and Optical Properties of Ir2Sc Z (Z = Si, Ge, Sn) Full-Heusler Compounds: a First-Principles Study. Journal of Electronic Materials 49(10): 5947-5956
Asadi, Y.; Nourbakhsh, Z. 2019: Structural, Electronic, Mechanical, Thermodynamic, and Linear and Nonlinear Optical Properties of Mo S2, Mo Se2, and their Mo S2x Se2(1−x) Alloys: Ab Initio Calculations. Journal of Electronic Materials 48(12): 7977-7990
Dash, S.; Lukoyanov, A.V.; Knyazev, Y.V.; Kuz'min, Y.I.; Baglasov, E.D.; Vasundhara, M.; Patra, A.K. 2019: Structural, Electronic, Optical, and Magnetic Properties of Fe3Al Alloys. Journal of Superconductivity and Novel Magnetism 32(9): 2995-3000
Zhu, S.; Ye, J.; Zhao, Y.; Qiu, Y. 2019: Structural, Electronic, Stability, and Optical Properties of Cs Pb1–x Snx IBr2 Perovskites: a First-Principles Investigation. The Journal of Physical Chemistry C 123(33): 20476-20487
Marana, N.L.; Casassa, S.; Longo, E.; Sambrano, J.R. 2016: Structural, Electronic, Vibrational, and Topological Analysis of Single-Walled Zinc Oxide Nanotubes. The Journal of Physical Chemistry C 120(12): 6814-6823
Navarro, M.; Segarra, C.; Pfister, T.; Albrecht, M. 2020: Structural, Electronic, and Catalytic Modulation of Chelating Pyridylideneamide Ruthenium(II) Complexes. Organometallics 39(13): 2383-2391
Cristaldi, D.A.; Impellizzeri, G.; Priolo, F.; Gupta, T.; Gulino, A. 2012: Structural, Electronic, and Electrical Properties of Y-Doped Cd2Sn O4. The Journal of Physical Chemistry C 116(5): 3363-3368
Cristaldi, D.A.; Millesi, S.; Crupi, I.; Impellizzeri, G.; Priolo, F.; Jacobs, R.M.J.; Egdell, R.G.; Gulino, A. 2014: Structural, Electronic, and Electrical Properties of an Undoped n-Type Cd O Thin Film with High Electron Concentration. The Journal of Physical Chemistry C 118(27): 15019-15026
Zhong, G.; Li, Y.; Yan, P.; Liu, Z.; Xie, M.; Lin, H. 2010: Structural, Electronic, and Electrochemical Properties of Cathode Materials Li2MSi O4 (M = Mn, Fe, and Co): Density Functional Calculations. The Journal of Physical Chemistry C 114(8): 3693-3700
Ning, F.; Xu, B.; Shi, J.; Wu, M.; Hu, Y.; Ouyang, C. 2016: Structural, Electronic, and Li Migration Properties of RE-Doped (RE = Ce, La) Li Co O2 for Li-ion Batteries: a First-Principles Investigation. The Journal of Physical Chemistry C 120(33): 18428-18434
Mamun, M.A.; Haque, A.; Pelton, A.; Paul, B.; Ghosh, K. 2018: Structural, Electronic, and Magnetic Analysis and Device Characterization of Ferroelectric–Ferromagnetic Heterostructure (BZT–BCT/LSMO/LAO) Devices for Multiferroic Applications. IEEE Transactions on Magnetics 54(12): 1-8
Mudarra Navarro, A.M.; Gil Rebaza, A.V.; Salcedo Rodríguez, K.L.; Melo Quintero, J.J.; Rodríguez Torres, C.E.; Weissmann, M.; Errico, L.A. 2019: Structural, Electronic, and Magnetic Properties and Hyperfine Interactions at the Fe Sites of the Spinel Ti Fe2O4. Ab Initio, XANES, and Mössbauer Study. The Journal of Physical Chemistry C 123(35): 21694-21703
Ding, Y.; Wang, Y. 2015: Structural, Electronic, and Magnetic Properties of Adatom Adsorptions on Black and Blue Phosphorene: a First-Principles Study. The Journal of Physical Chemistry C 119(19): 10610-10622
Deng, M.; Xin, Z.; Yan, X.; Liu, J.; Yu, M. 2016: Structural, Electronic, and Magnetic Properties of Bimetallic Ni m Nb n (m + n ≤ 8) Clusters: first Principle Study. Journal of Superconductivity and Novel Magnetism 30(1): 251-260
Ding, Y.; Wang, Y.; Ni, J. 2010: Structural, Electronic, and Magnetic Properties of Defects in the BC3 Sheet from first Principles. The Journal of Physical Chemistry C 114(29): 12416-12421
Akbudak, S.; Candan, A.; Özduran, M. 2019: Structural, Electronic, and Magnetic Properties of Hard Magnetic Sm Ni2Fe Compound: a DFT Study. Journal of Superconductivity and Novel Magnetism 32(12): 3901-3905
Ge, G.; Jing, Q.; Cao, H.; Yan, H. 2011: Structural, Electronic, and Magnetic Properties of MB n (M = Y, Zr, Nb, Mo, Tc, Ru, n ≤ 8) Clusters. Journal of Cluster Science 23(2): 189-202
Azouaoui, A.; Haoua, M.E.; Salmi, S.; Grini, A.E.; Benzakour, N.; Hourmatallah, A.; Bouslykhane, K. 2019: Structural, Electronic, and Magnetic Properties of Mn4N Perovskite: Density Functional Theory Calculations and Monte Carlo Study. Journal of Superconductivity and Novel Magnetism 33(5): 1507-1512
Zhang, T.; Zhu, L.; Tian, Z.; Wang, J. 2011: Structural, Electronic, and Magnetic Properties of Neutral and Charged Transition Metal–Bis(dicarbollide) Sandwich Clusters. The Journal of Physical Chemistry C 115(30): 14542-14547
Ueno, S.; Kawasaki, T.; Okabayashi, J.; Kitazawa, T. 2015: Structural, Electronic, and Magnetic Properties of Novel Spin-Crossover Complex: Fe(butyl nicotinate)2[Au(CN)2]2. Bulletin of the Chemical Society of Japan 88(4): 551-553
Estiu, G.L.; Zerner, M.C. 1996: Structural, Electronic, and Magnetic Properties of Small Ni Clusters. The Journal of Physical Chemistry 100(42): 16874-16880
Freeman, A.; Continenza, A.; Li, C. 1990: Structural, Electronic, and Magnetic Properties of Thin Films and Superlattices. MRS Bulletin 15(9): 27-33
Idrissi, S.; Labrim, H.; Bahmad, L.; Benyoussef, A. 2021: Structural, Electronic, and Magnetic Properties of the Rare Earth-Based Solar Perovskites: Gd Al O3, Dy Al O3, and Ho Al O3. Journal of Superconductivity and Novel Magnetism 34(9): 2371-2380
Guimarães, L.; Enyashin, A.N.; Seifert, G.; Duarte, H.A. 2010: Structural, Electronic, and Mechanical Properties of Single-Walled Halloysite Nanotube Models. The Journal of Physical Chemistry C 114(26): 11358-11363
Li, G.; Josowicz, M.; Janata, J.; Müllen, K. 2001: Structural, Electronic, and Morphological Changes in Poly(phenylenesulfide phenyleneamine) upon Electrochemical Doping. The Journal of Physical Chemistry B 105(11): 2191-2196
Guo, Y.; Xue, Y.; Geng, C.; Li, C.; Li, X.; Niu, Y. 2019: Structural, Electronic, and Optical Characterizations of the Interface between CH3NH3Pb I3 and Ba Sn O3 Perovskite: a First-Principles Study. The Journal of Physical Chemistry C 123(26): 16075-16082
Li, Y.; Zhao, X.; Fan, W. 2011: Structural, Electronic, and Optical Properties of Ag-Doped Zn O Nanowires: first Principles Study. The Journal of Physical Chemistry C 115(9): 3552-3557
da Silva, M.B.; dos Santos, R.C.R.; da Cunha, A.M.; Valentini, A.; Pessoa, O.D.L.; Caetano, E.W.S.; Freire, V.N. 2016: Structural, Electronic, and Optical Properties of Bulk Boric Acid 2A and 3T Polymorphs: Experiment and Density Functional Theory Calculations. Crystal Growth-Design 16(11): 6631-6640
Rondiya, S.; Wadnerkar, N.; Jadhav, Y.; Jadkar, S.; Haram, S.; Kabir, M. 2017: Structural, Electronic, and Optical Properties of Cu2Ni Sn S4: a Combined Experimental and Theoretical Study toward Photovoltaic Applications. Chemistry of Materials 29(7): 3133-3142
Sun, X.; Long, R.; Cheng, X.; Zhao, X.; Dai, Y.; Huang, B. 2008: Structural, Electronic, and Optical Properties of N-doped Sn O2. The Journal of Physical Chemistry C 112(26): 9861-9864
Öğüt, S.; Idrobo, J.C.; Jellinek, J.; Wang, J. 2006: Structural, Electronic, and Optical Properties of Noble Metal Clusters from first Principles. Journal of Cluster Science 17(4): 609-626
Zhao, Z.; Yang, C.; Wang, M.; Ma, X.; Zhan, L.; Yi, Y. 2017: Structural, Electronic, and Optical Properties of Superhard Materials t P10-Fe B4 and I4 1 /acd-Fe B4. Journal of Electronic Materials 46(4): 2506-2511
Cheung, C.F.; Hsu, P.S.; Xie, J.R.H. 2006: Structural, Electronic, and Spectroscopic Properties of Saturn-Type Labile Fullerene C50 Derivatives. Journal of Computational and Theoretical Nanoscience 3(5): 785-797
Lv, H.Y.; Liu, H.J.; Pan, L.; Wen, Y.W.; Tan, X.J.; Shi, J.; Tang, X.F. 2010: Structural, Electronic, and Thermoelectric Properties of Bi Sb Nanotubes. The Journal of Physical Chemistry C 114(49): 21234-21239
Si, H.G.; Wang, Y.X.; Yan, Y.L.; Zhang, G.B. 2012: Structural, Electronic, and Thermoelectric Properties of in Se Nanotubes: First-Principles Calculations. The Journal of Physical Chemistry C 116(6): 3956-3961
Zhou, J.; Yan, X.; Luo, G.; Qin, R.; Li, H.; Lu, J.; Mei, W.N.; Gao, Z. 2010: Structural, Electronic, and Transport Properties of Gd/Eu Atomic Chains Encapsulated in Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 114(36): 15347-15353
Baran, J.D.; Eames, C.; Takahashi, K.; Molinari, M.; Islam, M.S.; Parker, S.C. 2017: Structural, Electronic, and Transport Properties of Hybrid Sr Ti O3-Graphene and Carbon Nanoribbon Interfaces. Chemistry of Materials 29(17): 7364-7370
Damin, A.; Llabrés i Xamena, F.X.; Lamberti, C.; Civalleri, B.; Zicovich-Wilson, C.M.; Zecchina, A. 2003: Structural, Electronic, and Vibrational Properties of the Ti−O−Ti Quantum Wires in the Titanosilicate ETS-10. The Journal of Physical Chemistry B 108(4): 1328-1336
Istratov, A.; Weber, E. 2005: Structural, Elemental, and Chemical Complex Defects in Silicon and their Impact on Silicon Devices. The Electrochemical Society Interface 14(1): 34-36
Goswami, B.; Pal, S.; Ghosh, C.; Sarkar, P. 2009: Structural, Energetic, and Mechanical Properties of Zn Se Nanotubes. The Journal of Physical Chemistry C 113(16): 6439-6443
Hui-Qing, S.; ; Shao-Feng, D.; Yu-Tian, W.; Bei, D.; Guang-Han, F. 2008: Structural, Energetical and Electronic Properties of Cd O and Cdx Zn1-x O Compounds. Acta Physico-Chimica Sinica 24(07): 1233-1238
Dabas, S.; Kumar, M.; Chaudhary, P.; Shankar, S.; Roy, S.; Thakur, O.P. 2019: Structural, Energy Storage Analysis and Enhanced Magnetoelectric Coupling in Mn Modified Multiferroic Bi Fe O3. Journal of Electronic Materials 48(9): 5785-5796
Kang, J.; Cunningham, H.B.; Jachec-Schmidt, C.; Norton, K.C.; Priest, A.M.; Sabbadini, R.A.; Dahms, A.S. 1990: Structural, Enzymatic, and Regulatory Properties of the Skeletal Muscle Transverse Tubule Mg-ATPase. Annals of the New York Academy of Sciences 603(1): 530-533
Muthukumaran, S.; Ashok kumar, M. 2013: Structural, FTIR and photoluminescence properties of Zn S:Cu thin films by chemical bath deposition method. Materials Letters 93: 223-225
Muthukumaran, S.; Gopalakrishnan, R. 2012: Structural, FTIR and photoluminescence studies of Cu doped Zn O nanopowders by co-precipitation method. Optical Materials 34(11): 1946-1953
Baker, L.; Bowmaker, G.A.; Hart, R.D.; Harvey, P.J.; Healy, P.C.; White, A.H. 1994: Structural, Far-IR, and Solid State 31P NMR Studies of Two-Coordinate Complexes of Tris(2,4,6-trimethoxyphenyl)phosphine with Copper(I) Iodide. Inorganic Chemistry 33(18): 3925-3931
Maqbool, A.; Hussain, A.; Rahman, J.U.; Malik, R.A.; Kim, M.S.; Song, T.K.; Kim, W.; Lee, J.H.; Kim, M. 2015: Structural, Ferroelectric and Field-Induced Strain Response of Nb-Modified (Bi0.5Na0.5)Ti O3-Sr Zr O3Lead-Free Ceramics. Ferroelectrics 488(1): 23-31
Acharya, T.; Choudhary, R.N.P. 2014: Structural, Ferroelectric, and Electrical Properties of Ni Ti O3 Ceramic. Journal of Electronic Materials 44(1): 271-280
Esthaku Peter, M.; Ramasamy, P. 2016: Structural, Growth and Characterizations of NLO Crystal: Triglycinium Calcium Nitrate. Advanced Materials Letters 7(1): 83-88
Pandey, S.K.; Pratap, S.; Rai, S.K.; Marverti, G. 2020: Structural, Hirshfeld surface and in vitro cytotoxicity evaluation of five new N-aryl-N'-alkoxycarbonyl thiocarbamide derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements 195(10): 812-820
Jotani, M.M.; Zukerman-Schpector, J.; Madureira, L.S.; Poplaukhin, P.; Arman, H.D.; Miller, T.; Tiekink, E.R. 2016: Structural, Hirshfeld surface and theoretical analysis of two conformational polymorphs of N,N′-bis(pyridin-3-ylmethyl)oxalamide. Zeitschrift für Kristallographie - Crystalline Materials 231(7): 415-425
Vijaya Babu, K.; Veeraiah, V.; Subba Rao, P. 2012: Structural, Impedance, Dielectric and Modulus Analysis of Li0.5-x La0.5Ti1-x Nbx O3(x = 0, 0.05, 0.1, and 0.15). Acta Physica Polonica A 122(4): 688-692
Pradhani, N.; Mahapatra, P.K.; Choudhary, R.N.P. 2020: Structural, Impedance, and Leakage Current Characteristics of Stannum Modified Bi0.5Na0.5Ti O3 Ceramic. Journal of Inorganic and Organometallic Polymers and Materials 31(2): 591-598
Kouki, N.; Hcini, S.; Aldawas, R.; Boudard, M. 2018: Structural, Infrared, Magnetic, and Electrical Properties of Ni0.6Cd0.2Cu0.2Fe2O4 Ferrites Synthesized Using Sol-Gel Method Under Different Sintering Temperatures. Journal of Superconductivity and Novel Magnetism 32(7): 2209-2218
Liu, C.; Ma, C.; Xie, R. 2020: Structural, Innovation and Efficiency Effects of Environmental Regulation: Evidence from China's Carbon Emissions Trading Pilot. Environmental and Resource Economics 75(4): 741-768
Oelschlaeger, C.; Waton, G.; Candau, S.J.; Cates, M.E. 2002: Structural, Kinetics, and Rheological Properties of Low Ionic Strength Dilute Solutions of a Dimeric (Gemini) Surfactant. Langmuir 18(20): 7265-7271
Khan, Z.R.; Munirah; Shkir, M.; Alshammari, A.S.; Ganesh, V.; AlFaify, S.; Gandouzi, M. 2018: Structural, Linear and Third Order Nonlinear Optical Properties of Sol-Gel Grown Ag-Cd S Nanocrystalline Thin Films. Journal of Electronic Materials 48(2): 1122-1132
Rajesh, K.; Kumar, P.P. 2014: Structural, Linear, and Nonlinear Optical and Mechanical Properties of new Organic L-Serine Crystal. Journal of Materials 2014: 1-5
Zhu, J.; Qian, W.; Zhu, Z.; Chen, H. 2014: Structural, Luminescence, and Electronic Properties of Potassium Holmium Cyclotetraphosphate KHo P4O12: Experiment and Theory. Zeitschrift für anorganische und allgemeine Chemie 641(3-4): 636-641
Raksa, P.; Pinitsoontorn, S.; Maensiri, S. 2016: Structural, Magnetic Properties and Dye-Sensitized Solar Cells Application of Pure and la Doped Bi Fe O3Powders Prepared by Sol-Gel. Ferroelectrics 492(1): 150-158
Wang, H.; Wang, H.; He, Q.; Wang, X.; Zhang, J. 2012: Structural, Magnetic Properties, and Hall Carrier Concentrations of (Co,Cu):Zn O Thin Films-The Role of Cu Ions and Annealing in Hydrogen. Journal of the American Ceramic Society 95(7): 2266-2271
Sivaram Prasad, M.; Vara Prasad, B.B.V.S.; Ramesh, K.V.; Rajesh Babu, B. 2020: Structural, Magnetic and DC Electrical Resistivity Studies of Ni–Zn–Cr Ferrites Prepared by the Citrate-Gel Auto-Combustion Method. Journal of Inorganic and Organometallic Polymers and Materials 31(3): 1163-1175
Shah, S.M.H.; Riaz, S.; Hussain, S.S.; Atiq, S.; Naseem, S. 2015: Structural, Magnetic and Dielectric Properties of Ba Doped Bi Fe O3 Thin Films. Materials Today: Proceedings 2(10): 5654-5659
Jian, Z.; Kumar, N.P.; Zhong, M.; Yemin, H.; Venugopal Reddy, P. 2015: Structural, Magnetic and Dielectric Properties of Bi0.9Re0.1Fe O3(Re = La, Sm, Gd and Y). Journal of Superconductivity and Novel Magnetism 28(9): 2627-2635
Zhao, H.; Huang, Z.; Ma, Z.; Jia, T.; Kimura, H.; Fu, Q.; Wang, G.; Tao, H.; Cai, K.; Fan, Z. 2017: Structural, Magnetic and Dielectric Properties of [(CH3)2NH2]Fe x Mn1−x (HCOO)3. Journal of Electronic Materials 46(10): 5540-5545
Domracheva, N.; Pyataev, A.; Manapov, R.; Gruzdev, M.; Chervonova, U.; Kolker, A. 2011: Structural, Magnetic and Dynamic Characterization of Liquid Crystalline Iron(III) Schiff Base Complexes with Asymmetric Ligands. European Journal of Inorganic Chemistry 8: 1219-1229
Parimala, S.; Kandaswamy, M.; Nissa, M.N.; Velmurugan, D. 2003: Structural, Magnetic and Electrochemical Studies of a new Series of Macrocyclic Mononuclear and Binuclear Manganese(III) and Unusually Stable Manganese(II) Complexes. Journal of Coordination Chemistry 56(4): 261-274
Thakur, A.; Thakur, P.; Hsu, J. 2014: Structural, Magnetic and Electromagnetic Characterization of In3+ Substituted Mn-Zn Nanoferrites. Zeitschrift für Physikalische Chemie 228(6-7): 663-672
Patil, R.P.; Nikam, P.N.; Patil, S.B.; Talap, P.D.; Patil, D.R.; Hankare, P.P. 2015: Structural, Magnetic and Gas Sensing Application of Novel Polyol Route Synthesized Cobalt Ferrite. Sensor Letters 13(9): 785-790
Trotta, R.; Tolea, F.; Valeanu, M.; Diamandescu, L.; Grabias, A.; Sorescu, M. 2018: Structural, Magnetic and Hyperfine Properties of Molybdenum Dioxide-Hematite Mixed Oxide Nanostructures. MRS Advances 3(47-48): 2887-2892
Huang, M.; Zhang, S. 2001: Structural, Magnetic and Magneto-Optical Properties of (YYb Bi)3Fe5O12 Single Crystal for High-Performance Magneto-Optical Applications. Physica status solidi (a) 185(2): 487-492
Dong, P.L.; Ma, L.; Zhou, X.; Wang, D.; Yao, Q.R.; Li, L. 2019: Structural, Magnetic and Magnetocaloric Effect of Gd6(Mn1−x Fex)23 Compounds. Journal of Low Temperature Physics 195(1-2): 221-229
Boutahar, A.; Moubah, R.; Lassri, H.; Bessais, L. 2020: Structural, Magnetic and Magnetocaloric Properties of Co2Y1−x Cux (x = 0.00, 0.05, and 0.10) Compounds. Journal of Superconductivity and Novel Magnetism 33(5): 1527-1533
Kumar, N.P.; Prabahar, K.; Kumar, D.M.R.; Raja, M.M. 2018: Structural, Magnetic and Magnetocaloric Properties of High-Energy Ball-Milled Gd5Si2Ge2B0.05 Alloy. Journal of Superconductivity and Novel Magnetism 32(2): 319-324
Gencer, H.; Izgi, T.; Bayri, N.; Pektas, M.; Kolat, V.S.; Atalay, S. 2016: Structural, Magnetic and Magnetocaloric Properties of Pr0.68Ca0.32−x Bi x Mn O3 (x = 0, 0.1, 0.18, 0.26 and 0.32) Compounds. Journal of Superconductivity and Novel Magnetism 29(9): 2443-2450
Marzouki-Ajmi, A.; Cheikhrouhou-Koubaa, W.; Koubaa, M.; Cheikhrouhou, A. 2014: Structural, Magnetic and Magnetocaloric Study of Polycrystalline (1−x)La0.65Ca0.35Mn O 3 /x Cr2O3 Composites. Journal of Superconductivity and Novel Magnetism 28(3): 1065-1070
Velicu, I.; Neagu, M.; Dobromir, M.; Luca, D.; Lupu, N.; Chiriac, H.; Borza, F. 2012: Structural, Magnetic and Magnetoelastic Behaviour of Fe Cu Nb Si B Thin Films. Sensor Letters 10(3): 902-905
Peña, A.; Gutiérrez, J.; Campo, J.; Barandiarán, J.M.; Lezama, L.; Gil de Muro, I.; Rojo, T. 2008: Structural, Magnetic and Magnetotransport Properties of la 0.7 Pb 0.3 (Mn 1– x Ni x )O 3 (0.1 ≤  x  ≤ 0.3) CMR Manganites. European Journal of Inorganic Chemistry 16: 2569-2576
Łaszcz, A.; Hasiak, M.; Kaleta, J. 2019: Structural, Magnetic and Mechanical Properties of Dual-Phase Ni50Mn25Ga20Gd5 Magnetic Shape Memory Alloy. Acta Physica Polonica A 135(2): 301-303
Qian, M.; Zhang, X.; Wei, L.; Geng, L.; Peng, H. 2015: Structural, Magnetic and Mechanical Properties of Oligocrystalline Ni-Mn-Ga Shape Memory Microwires. Materials Today: Proceedings 2: S577-S581
Zhu, X.R.; Lu, L.F.; Shen, H.L. 2010: Structural, Magnetic and Microwave Absorbing Properties of Nanosized Ni XZn1-x Fe2O4 Powders Synthesized by Sol-Gel Technique. Advanced Materials Research 148-149: 1144-1147
Nikzad, A.; Parvizi, R.; Rezaei, G.; Vaseghi, B.; Khordad, R. 2017: Structural, Magnetic and Microwave Properties of Nanocrystalline Ni-Co-Gd Ferrites. Journal of Electronic Materials 47(2): 1302-1310
Kanwal, M.; Ahmad, I.; Meydan, T.; Cuenca, J.A.; Williams, P.I.; Farid, M.T.; Murtaza, G. 2018: Structural, Magnetic and Microwave Properties of Gadolinium-Substituted Ca-Ba M-Type Hexagonal Ferrites. Journal of Electronic Materials 47(9): 5370-5377
Jayakumar, T.; Raja, C.R.; Arumugam, S. 2020: Structural, Magnetic and Optical Analysis of Pb2+- and Ce3+-Doped Strontium Hexaferrite. Journal of Superconductivity and Novel Magnetism 33(8): 2451-2458
El Hachmi, A.; El Bachraoui, F.; Louihi, S.; Tamraoui, Y.; Benmokhtar, S.; Bih, L.; Sajieddine, M.; Lazor, P.; Manoun, B. 2020: Structural, Magnetic and Optical Properties Study of Tellurium-Based Perovskites: Sr3−x Pbx Fe2Te O9 (0 ≤ x ≤ 2.25). Journal of Inorganic and Organometallic Polymers and Materials 30(6): 1990-2006
Xian, H.; Du, Y.; Zhang, J.; Chen, X. 2016: Structural, Magnetic and Optical Properties of Bi Fe1−x Nbx O3. Chinese Journal of Chemical Physics 29(5): 578-584
Dixit, G.; Singh, J.; Srivastava, R.; Agrawal, H.; Chaudhary, R. 2012: Structural, Magnetic and Optical Studies Of nickel Ferrite Thin Films. Advanced Materials Letters 3(1): 21-28
Zipare, K. V.; Bandgar, S. S.; Shahane, G. S. 2018: Structural, Magnetic and Rheological Behavior of Mn–Zn Ferrofluid. Advanced Science Letters 24(8): 5560-5565
Deac, I.G.; Pop, I.; Pop, V.; Burda, I. 1997: Structural, Magnetic and Superconducting Properties of the Y1-x Zrx Ba2-2x Ca2x Cu3O7-δ Compounds. Modern Physics Letters B 11(26n 27): 1175-1180
Ono, Y.; Satoh, K.; Nozaki, T.; Kajitani, T. 2007: Structural, Magnetic and Thermoelectric Properties of Delafossite-type Oxide, Cu Cr1-x Mgx O2(0 ≤x≤0.05). Japanese Journal of Applied Physics 46(3A): 1071-1075
Castillo, R.; Schnelle, W.; Bobnar, M.; Cardoso‐Gil, R.; Schwarz, U.; Grin, Y. 2020: Structural, Magnetic and Thermoelectric Properties of hp ‐Mn 3 Ge 5. Zeitschrift für anorganische und allgemeine Chemie 646(4): 256-262
Sarrao, J.L. 1998: Structural, Magnetic and Transport Properties of Li-Doped La2Cu O4. International Journal of Modern Physics B 12(29n 31): 3224-3227
Todorović, T.; Grubišić, S.; Pregelj, M.; Jagodič, M.; Misirlić‐Denčić, S.; Dulović, M.; Marković, I.; Klisurić, O.; Malešević, A.; Mitić, D.; Anđelković, K.; Filipović, N. 2015: Structural, Magnetic, DFT, and Biological Studies of Mononuclear and Dinuclear Cu Ii Complexes with Bidentate N‐Heteroaromatic Schiff Base Ligands. European Journal of Inorganic Chemistry 23: 3921-3931
Sanad, M.; Harbaoui, D.; Rossignol, C.; Hlil, E.; Amdouni, N.; Zaidat, K.; Obbade, S. 2017: Structural, Magnetic, Electrical and Electrochemical Properties of O3-Type Layered Materials: Na Ni1/3Mn1/3Co(1/3-x)Fex O2. ECS Transactions 81(1): 79-86
Bharathi, K.K.; Markandeyulu, G.; Ramana, C.V. 2010: Structural, Magnetic, Electrical, and Magnetoelectric Properties of Sm- and Ho-Substituted Nickel Ferrites. The Journal of Physical Chemistry C 115(2): 554-560
Lebreau, F.; Islam, M.M.; Diawara, B.; Marcus, P. 2014: Structural, Magnetic, Electronic, Defect, and Diffusion Properties of Cr2O3: a DFT+U Study. The Journal of Physical Chemistry C 118(31): 18133-18145
Ettayfi, A.; Moubah, R.; Boutahar, A.; Hlil, E.K.; Lassri, H. 2015: Structural, Magnetic, Magnetocaloric, and Critical Exponent Properties of La0.67Sr0.33Mn O3 Powders Synthesized by Solid-State Reaction. Journal of Superconductivity and Novel Magnetism 29(1): 133-138
Head, J.; Manuel, P.; Orlandi, F.; Jeong, M.; Lees, M.R.; Li, R.; Greaves, C. 2020: Structural, Magnetic, Magnetocaloric, and Magnetostrictive Properties of Pb1-x Srx Mn BO4 (x = 0, 0.5, and 1.0). Chemistry of Materials 32(23): 10184-10199
Taufiq, A.; Ikasari, F.; Yuliantika, D.; Sunaryono, S.; Mufti, N.; Susanto, H.; Suarsini, E.; Hidayat, N.; Fuad, A.; Hidayat, A.; Diantoro, M. 2019: Structural, Magnetic, Optical and Antibacterial Properties of Magnetite Ferrofluids with PEG-20000 Template. Materials Today: Proceedings 17: 1728-1735
Blessington Selvadurai, A.P.; Pazhanivelu, V.; Murugaraj, R. 2013: Structural, Magnetic, Optical and Electrical Properties of Ba Substituted Bi Fe O3. Journal of Superconductivity and Novel Magnetism 27(3): 839-844
Hakimyfard, A.; Khademinia, S. 2021: Structural, Magnetic, Optical and Electrochemical Properties of a new Class of α-Fe2O3-Mx-Ni Fe2O4+δ (M = None, Co2+, Eu3+, Ho3+ and Yb3+) Nanocomposites. Journal of Superconductivity and Novel Magnetism 34(12): 3385-3393
Soek, R.N.; da C. Gouveia, T.L.; Garbelini, E.R.; dos R. Crespan, E.; Pineider, F.; Poneti, G.; Machado, G.S.; Ribeiro, R.R.; Hörner, M.; Nunes, F.S. 2017: Structural, Magnetic, Spectroscopic and Density Functional Theory (DFT) Analysis of Bis((1-((E)-2-pyridinylmethylidene)semicarbazone)copper(II)sulfate) Dihydrate Complex. ChemistrySelect 2(27): 8451-8458
Bentouaf, A.; Bouras, F.; Mebsout, R.; Aïssa, B. 2019: Structural, Magnetic, and Band Structure Characteristics of the Half-Metal–Type Heusler Alloys Co2VSi1−x Alx (x = 0, 0.25, 0.5, 0.75, and 1). Journal of Superconductivity and Novel Magnetism 33(4): 1177-1186
Miller, D.C.; Bollinger, J.C.; Hoffman, B.M.; Ibers, J.A. 1994: Structural, Magnetic, and Charge-Transport Properties of a new One-Dimensional Molecular Conductor, Ni(tprpc)I1.67 (tprpc = 2,7,12,17-Tetrapropylporphycenato). Inorganic Chemistry 33(15): 3354-3357
Cótica, L.F.; De Medeiros, S.N.; Santos, I.A.; Paesano Jr., A.; Kinast, E.J.; Da Cunha, J.B.M.; Venet, M.; Garcia, D.; Eiras, J.A. 2006: Structural, Magnetic, and Dielectric Investigations of the Fe Al O3 Multiferroic Ceramics. Ferroelectrics 338(1): 241-246
Babu, B.R.; Ramesh, K.V.; R. Prasad, M.S.; Purushotham, Y. 2016: Structural, Magnetic, and Dielectric Properties of Ni0.5Zn0.5Al x Fe2−x O4 Nanoferrites. Journal of Superconductivity and Novel Magnetism 29(4): 939-950
Farid, G.; Murtaza, G.; Flemban, T.H.; Althib, H.; AlObaid, A.A.; Al-Muhimeed, T.I.; Mera, A.; Haq, B.U.; Mahmood, Q. 2021: Structural, Magnetic, and Dielectric Properties of Sn-Doped Bi Fe O3: Experiment and DFT Analysis. Journal of Superconductivity and Novel Magnetism 34(8): 2179-2188
Ambikeswari, N.; Manivannan, S. 2021: Structural, Magnetic, and Dielectric Properties of Ultrafine Nickel-Substituted Cobalt Ferrite-Reduced Graphene Oxide Nanocomposites. Journal of Electronic Materials 50(11): 6135-6148
Simonneaux, G.; Schünemann, V.; Morice, C.; Carel, L.; Toupet, L.; Winkler, H.; Trautwein, A.X.; Walker, F.A. 2000: Structural, Magnetic, and Dynamic Characterization of the (dxz,dyz)4(dxy)1 Ground-State Low-Spin Iron(III) Tetraphenylporphyrinate Complex [(p-TTP)Fe(2,6-Xylyl NC)2]CF3SO3. Journal of the American Chemical Society 122(18): 4366-4377
Boulahya, K.; Parras, M.; González-Calbet, J.M.; Amador, U.; Martínez, J.L.; Fernández-Díaz, M.T. 2006: Structural, Magnetic, and Electrical Behavior of Low Dimensional Ba2Co O4. Chemistry of Materials 18(16): 3898-3903
Thakur, S.; Parmar, K.; Sharma, S.; Negi, N.S. 2020: Structural, Magnetic, and Electrical Properties of (1-x) Na0.5Bi0.5Ti O3 –(x) Ni Fe2O4(x = 0.1, 0.3, 0.5, 0.7, and 0.9) Multiferroic Particulate Composite. Journal of Superconductivity and Novel Magnetism 34(2): 489-495
M. Ramay, S.; A. Siddiqi, S.; Atiq, S.; S. Awan, M.; Riaz, S. 2010: Structural, Magnetic, and Electrical Properties of Al3+Substituted Cu Zn-ferrites. Chinese Journal of Chemical Physics 23(5): 591-595
Chen, W.; Sher, F.; Mathur, N.D.; Kavanagh, C.M.; Morrison, F.D.; Attfield, J.P. 2011: Structural, Magnetic, and Electrical Properties of Bi1–x Lax Mn O3(x = 0.0, 0.1, and 0.2) Solid Solutions. Chemistry of Materials 24(1): 199-208
Prajapati, R.C.; ShubhamGautam; Surve, S.; Shukla, V.N. 2019: Structural, Magnetic, and Electrical Properties of Co Doped Zn O Thin Films. Advanced Science, Engineering and Medicine 11(1): 15-20
P N, R.S.; Orlandi, F.; Manuel, P.; Zhang, W.; Halaysyamani, P.S.; Sundaresan, A. 2021: Structural, Magnetic, and Electrical Properties of Doubly Ordered Perovskites Na Ln Ni WO6 (Ln = La, Pr, Nd, Sm, Eu, Gd, and Tb). The Journal of Physical Chemistry C 125(12): 6749-6757
Praveena, K.; Bououdina, M.; Penchal Reddy, M.; Srinath, S.; Sandhya, R.; Katlakunta, S. 2014: Structural, Magnetic, and Electrical Properties of Microwave-Sintered Cr3+-Doped Sr Hexaferrites. Journal of Electronic Materials 44(1): 524-531
Venkatesh, D.; Himavathi, G.; Ramesh, K.V. 2015: Structural, Magnetic, and Electrical Properties of Ni0.65Zn0.35−x Cu x Fe2 O 4 Nanoferrite System. Journal of Superconductivity and Novel Magnetism 28(9): 2801-2807
Jerbi, A.; Krichene, A.; Thaljaoui, R.; Boujelben, W. 2015: Structural, Magnetic, and Electrical Study of Polycrystalline Pr0.55Sr0.45−x Na x Mn O3 (x = 0.05 and 0.1). Journal of Superconductivity and Novel Magnetism 29(1): 123-132
Natke, D.; Preiss, A.; Klimke, S.; Shiga, T.; Boca, R.; Ohba, M.; Oshio, H.; Renz, F. 2021: Structural, Magnetic, and Electrochemical Characterization of Iron(III) and Cobalt Complexes with Penta‐N 3 O 2 ‐dentate Ligands. European Journal of Inorganic Chemistry 15: 1498-1504
Charbonnière, L.J.; Williams, A.F.; Piguet, C.; Bernardinelli, G.; Rivara-Minten, E. 1998: Structural, Magnetic, and Electrochemical Properties of Dinuclear Triple Helices: Comparison with their Mononuclear Analogues. Chemistry - A European Journal 4(3): 485-493
Makaremi, N.; Nourbakhsh, Z. 2015: Structural, Magnetic, and Electronic Properties and the Topological Phase of Ce Pd Bi Bulk and Nanolayers. Journal of Superconductivity and Novel Magnetism 28(7): 2133-2141
Engin, T.E.; Powell, A.V.; Hull, S. 2008: Structural, Magnetic, and Electronic Properties of Vx Cr2−x S3(0 < x < 2). Chemistry of Materials 20(5): 2039-2048
Keutel, H.; Käpplinger, I.; Jäger, E.; Grodzicki, M.; Schünemann, V.; Trautwein, A.X. 1999: Structural, Magnetic, and Electronic Properties of a Pentacoordinated Intermediate-Spin (S = 3/2) Iron(III) Complex with a Macrocyclic [N4]2- Ligand. Inorganic Chemistry 38(10): 2320-2327
Casassa, S.; Ferrari, A.M.; Busso, M.; Pisani, C. 2002: Structural, Magnetic, and Electronic Properties of the Ni O Monolayer Epitaxially Grown on the (001) Ag Surface:  An ab Initio Density Functional Study. The Journal of Physical Chemistry B 106(50): 12978-12985
Kush, L.; Srivastava, S.; Jaiswal, Y.; Anant, R. 2020: Structural, Magnetic, and Exchange Bias Behavior of Nickel-Based Ni2Cu Cr Fe Alx (x = 0.5, 1.0, 1.5, and 2.5) High-Entropy Alloys. Journal of Materials Engineering and Performance 29(4): 2256-2273
Taran, S.; Biswas, B.; Yang, H.D. 2020: Structural, Magnetic, and Ferroelectric Properties of Zr-Doped Y1-x Zrx Cr O3 Bulk Polycrystalline System. Journal of Superconductivity and Novel Magnetism 33(8): 2483-2491
Liu, D.; Gu, L.; Chen, Z.; Dai, H.; Li, T.; Xue, R.; Xie, X.; Ye, F.; Yang, P. 2019: Structural, Magnetic, and Giant Dielectric Properties of Gd Substituted Cu Fe O2 Composites. Journal of Superconductivity and Novel Magnetism 32(9): 2923-2929
Swamy, V.; Mi, S.; Huang, H.; Mei, C.; Lu, Y.; Song, D.; Du, H.; Zhao, Y. 2021: Structural, Magnetic, and Low-Temperature Electrical Transport Properties of YIG Thin Films with Heavily Reduced Oxygen Contents. ACS Applied Electronic Materials 3(8): 3313-3320
Zhang, G.B.; Zheng, W.G.; Cui, Y.; Shi, Y.G.; Shi, D.N. 2017: Structural, Magnetic, and Magentostrictive Properties of Dy1−x (Tb0.2Pr0.8) x Fe1.93 (0≤ x ≤ 0.5) Compounds. Journal of Superconductivity and Novel Magnetism 31(7): 2217-2220
Djabri, A.; Mahdi, M.; Boukhalfa, R.; Erkovan, M.; Chumakov, Y.; Chemam, F. 2017: Structural, Magnetic, and Magneto-Optical Properties of Fe/Cu Superlattices. Journal of Superconductivity and Novel Magnetism 30(11): 3207-3214
Fkhar, L.; Mahmoud, A.; Boschini, F.; Hamedoun, M.; Benyoussef, A.; Hlil, E.; Ali, M.A.; Mounkachi, O. 2019: Structural, Magnetic, and Magnetocaloric Properties in Rare Earth Orthochromite (Sm, Nd, and La)Cr O3 for Cooling Product. Journal of Superconductivity and Novel Magnetism 33(4): 1023-1030
Kolat, V.S.; Atalay, S.; Izgi, T.; Gencer, H.; Bayri, N. 2015: Structural, Magnetic, and Magnetocaloric Properties of La1−x Bi x Mn O3 (x = 0.01, 0.03, 0.06, 0.1, 0.2) Compounds. Metallurgical and Materials Transactions A 46(6): 2591-2597
Kılıç Çetin, S.; Akça, G.; Ayaş, A.O.; Akyol, M.; Ekicibil, A. 2019: Structural, Magnetic, and Magnetocaloric Properties of Pb-Substituted La0.7(Te1-x Pbx)0.3Mn O3 (0.0 ≤ x ≤ 0.3) Manganites. Journal of Superconductivity and Novel Magnetism 33(2): 527-538
Bhatt, R.C.; Meena, R.S.; Kishan, H.; S. Awana, V.P.; Agarwal, S.K. 2016: Structural, Magnetic, and Magnetocaloric Studies of Ni50Mn30Sn20 Shape Memory Alloy. Journal of Superconductivity and Novel Magnetism 29(12): 3201-3206
Shen, C.Y.; Liu, J.J.; Zhang, H.T.; Shen, W.B.; Pan, Z.B.; Si, P.Z. 2019: Structural, Magnetic, and Magnetoelastic Properties of High Nd-Content Laves Alloys Prepared by Solid-State Synthesis. Journal of Superconductivity and Novel Magnetism 32(11): 3609-3613
Unger, W.; Wolfgang, E.; Harms, H.; Haudek, H. 1972: Structural, Magnetic, and Magneto‐Optic Properties of Ti‐Substituted Mn Bi Films. Journal of Applied Physics 43(6): 2875-2880
Ali-Sharbati; Amiri, G.; Mousarezaei, R. 2014: Structural, Magnetic, and Microwave-Absorption Properties of Nanocrystalline Ca(Mn Sn) x Fe12−2x O19 Ferrites. Journal of Electronic Materials 44(2): 715-719
Palade, P.; Plapcianu, C.; Mercioniu, I.; Comanescu, C.; Schinteie, G.; Leca, A.; Vidu, R. 2017: Structural, Magnetic, and Mössbauer Investigation of Ordered Iron Nitride with Martensitic Structure Obtained from Amorphous Hematite Synthesized via the Microwave Route. Industrial-Engineering Chemistry Research 56(11): 2958-2966
Heiba, Z.K.; Mohamed, M.B.; Imam, N.G. 2016: Structural, Magnetic, and Optical Performance of Al and Mo Doped Ga Fe O3. Journal of Superconductivity and Novel Magnetism 29(6): 1647-1655
Djebour, B.; Bouafia, H.; Sahli, B.; Hiadsi, S.; Abidri, B. 2017: Structural, Magnetic, and Optoelectronic Properties of Cu Mn Se2-Chalcopyrite: DFT + U and Hybrid Functional Investigation. Journal of Superconductivity and Novel Magnetism 31(6): 1881-1893
Amine Monir, M.E.; Baltache, H.; Khenata, R.; Murtaza, G.; Mahmood, A. 2016: Structural, Magnetic, and Optoelectronic Properties of Tb Ni5, Tb Ni3Ti2 and Tb Ni3V2 Compounds. Journal of Superconductivity and Novel Magnetism 29(5): 1255-1266
Boona, S.R.; Morelli, D.T. 2012: Structural, Magnetic, and Thermoelectric Properties of Some Ce Pd3-Based Compounds. Journal of Electronic Materials 42(7): 1592-1596
Wang, Q.; Duan, P.; Wang, J.Y.; Chang, L.; Zhao, J.L.; Kong, L.; Yuan, A.J. 2013: Structural, Magnetic, and Transport Properties of La0.62Sb0.38Mn O3 Ceramic. Advanced Materials Research 800: 398-401
Dwevedi, S.; Dahilya, M.K.; Tiwari, B. 2016: Structural, Magnetic, and Transport Properties of Ni Ti Ir Shape Memory Alloy. Journal of Superconductivity and Novel Magnetism 29(8): 2071-2074
Tissot, A.; Fertey, P.; Guillot, R.; Briois, V.; Boillot, M. 2013: Structural, Magnetic, and Vibrational Investigations of Fe IIi Spin‐Crossover Compounds [Fe(4‐Me O–Sal Een) 2 ]X with X = NO 3 – and PF 6 –. European Journal of Inorganic Chemistry 1: 101-109
Bazuev, G.V.; Tyutyunnik, A.P.; Kuznetsov, M.V.; Zainulin, Y.G. 2018: Structural, Magnetic, and XPS Studies of the Double-Perovskite Mn2VSb O6. Journal of Superconductivity and Novel Magnetism 31(9): 2907-2914
Mansouri, M.; Fallarino, L.; M'nassri, R.; Cheikhrouhou-Koubaa, W.; Cheikhrouhou, A. 2019: Structural, Magnetocaloric, and Critical Behavior of La0.5Ca0.5Mn1−x Vx O3 Manganites Prepared by High-Energy Ball Milling. Journal of Superconductivity and Novel Magnetism 33(4): 995-1005
Mukherjee, S.; Weyhermüller, T.; Bothe, E.; Chaudhuri, P. 2003: Structural, Magnetochemical and Electrochemical Studies of Dinuclear Complexes Containing the [V V O] 2 , [V IV O] 2 , Cr IIi 2 , Mn IIi 2 and Fe IIi 2 Cores of a Potentially Pentadentate Phenol‐Containing Ligand with (O,N,O,N,O)‐Donor Atoms. European Journal of Inorganic Chemistry 10: 1956-1965
Li, X.; Du, X.P.; Wang, Y.X. 2011: Structural, Mechanical Stability, and Physical Properties of Iridium Carbides with Various Stoichiometries: First-Principles Investigations. The Journal of Physical Chemistry C 115(14): 6948-6953
Radha, G.; Venkatesan, B.; Vellaichamy, E.; Balakumar, S. 2018: Structural, Mechanical and Biological Insights on Reduced Graphene Nanosheets Reinforced Sonochemically Processed Nano‐Hydroxyapatite Ceramics. Ceramics International 44(8): 8777-8787
Bashir, M.; Riaz, S.; Naseem, S. 2015: Structural, Mechanical and Magnetic Properties of Fe O Added Zirconia. Materials Today: Proceedings 2(10): 5627-5633
Ullah, N.; Ali, Z.; Khan, I.; Rehman, G.; Ahmad, I. 2017: Structural, Mechanical and Optoelectronic Properties of Y2M2O7 (M = Ti, V and Nb) Pyrochlores: a first Principles Study. Journal of Electronic Materials 46(7): 4640-4648
Singh, M.K.; Gautam, R.K. 2019: Structural, Mechanical, and Electrical Behavior of Ceramic-Reinforced Copper Metal Matrix Hybrid Composites. Journal of Materials Engineering and Performance 28(2): 886-899
Manzano, H.; Dolado, J.S.; Ayuela, A. 2009: Structural, Mechanical, and Reactivity Properties of Tricalcium Aluminate Using First-Principles Calculations. Journal of the American Ceramic Society 92(4): 897-902
Bag, S.; Behera, B. 2017: Structural, Micro-Structural and Electrical Properties of Rare Earth Doped Bi4V2O11Ceramics. ECS Journal of Solid State Science and Technology 6(8): N127-N136
Kavitha, K.; Rao, T.S.; Suvarna, R.P.; Kumar, M.P. 2020: Structural, Microscopy Analysis and Compressive Strength of Zn O–Cu O Nanocomposites. Advanced Science, Engineering and Medicine 12(2): 163-167
Mathivanan, V.; Raj, S.G.; Kumar, G.R.; Mohan, R. 2015: Structural, Microstructural and Electrical Properties of Strontium Barium Niobate (SBN60) Ceramics. Materials Today: Proceedings 2(4-5): 1243-1250
Ammouchi, N.; Otmani, A.; Bensebaa, Z.; Azzaza, S.; Bououdina, M.; Djekoun, A.; Bechiri, L.; Grénèche, J.M. 2015: Structural, Microstructural and Magnetic Characterizations of Mechanically Alloyed Fe65Si20Cr15 Powders Mixture. Journal of Superconductivity and Novel Magnetism 28(12): 3651-3661
Santos, I.A.; Cótica, L.F.; De Medeiros, S.N.; Paesano Jr., A.; Coelho, A.A.; Gama, S.; Venet, M.Z.; Garcia, D.; Eiras, J.A. 2006: Structural, Microstructural and Magnetic Properties of the High-Energy Ball Milled Bi Fe O3 and Bi Fe0.95 Mn0.05O3 Ferroelectromagnetic Compounds. Ferroelectrics 338(1): 233-239
Shisode, M.V.; Bhoyar, D.N.; Khirade, P.P.; Jadhav, K.M. 2017: Structural, Microstructural, Magnetic, and Ferroelectric Properties of Ba 2 + -Doped Bi Fe O3 Nanocrystalline Multifferroic Material. Journal of Superconductivity and Novel Magnetism 31(8): 2501-2509
Ibuki, C.; Sakdanuphab, R. 2013: Structural, Morphological and Adhesion Properties of Cofeb Thin Films Deposited by DC Magnetron Sputtering. Advanced Materials Research 802: 47-52
Seshendra Reddy, C.; Sivasankar Reddy, A.; Sreedhara Reddy, P. 2012: Structural, Morphological and Composition Analysis of Nanocrystalline La0.67Ba0.33Mn O3 Powder. Advanced Materials Research 584: 239-242
Dzulkurnain, N.A.; Mohamed, N. 2015: Structural, Morphological and Electrical Characteristics of Sol-Gel Prepared Lithium Triflate - Alumina Composite Electrolyte. Advanced Materials Research 1107: 151-157
Kumari, R.; Kumar, V. 2020: Structural, Morphological and Electrical Properties of Cd O Thin Film Produced by Sol–Gel Spin Coating Procedure. Advanced Science, Engineering and Medicine 12(1): 75-77
B. Aziz, S. 2016: Structural, Morphological and Electrochemical Impedance Study of CS:Li Tf based Solid Polymer Electrolyte: Reformulated Arrhenius Equation for Ion Transport Study. International Journal of Electrochemical Science: 9228-9244
Yakout, S.M.; El-Sayed, A.M. 2016: Structural, Morphological and Ferromagnetic Properties of Pure and (Mn, Co) Codoped Cu O Nanostructures. Journal of Superconductivity and Novel Magnetism 29(11): 2961-2968
Isah, K.; Ramalan, A.; Jolayemi, B. 2016: Structural, Morphological and Optical Characteristics of Low Temperature Oxidized Metallic Zinc Films. British Journal of Applied Science-Technology 16(6): 1-9
Chandra, P.; Kumar Verma, A.; Shukla, R.; Srivastava, A. 2018: Structural, Morphological and Optical Characterization of X80Y10Cu10 and Y80X10Cu10 (X = Se, Y,Te) Chalcogenide Thin Films. Materials Today: Proceedings 5(3): 9156-9160
Humayun, Q.; Hashim, U. 2015: Structural, Morphological and Optical Properties of Sol-Gel Derived Zn O Thin Film for UV Sensing Application. Advanced Materials Research 1109: 304-308
Abd-Alghafour, N.M.; Ahmed, N.M.; Hassan, Z.; Mohammad, S.M.; Bououdina, M.; Ali, M.K.M. 2016: Structural, Morphological and Optical Properties of V2O5 Nanorods Grown Using Spray Pyrolysis Technique at Different Substrate Temperature. Nanoscience and Nanotechnology Letters 8(2): 181-186
Shivanna, M.; Nagappa, N.; Siddalingappa, D.M. 2020: Structural, Morphological and Photoluminescence Studies of Pure Zr O2 and Zr O2: Eu+3 Nanophosphors Synthesised by Microwave-Assisted Hydrothermal Technique. Plasmonics 15(6): 1629-1637
Bousiakou, L.G.; Ivanda, M.; Mikac, L.; Raptis, D.; Gotic, M.; Lianos, P.; Jurschat, K.; Johnston, C. 2018: Structural, Morphological and Raman Studies of Cd S/Cd Se Sensitized Ti O2 Nanocrystalline Thin Films for Quantum Dot Sensitized Solar Cell Applications. Current Nanoscience 14(5): 421-431
Kornyushchenko, A.; Kosminska, Y.; Stas, S.; Wilde, G.; Perekrestov, V. 2021: Structural, Morphological and Sensor Properties of the Fractal-Percolation Nanosystem Zn O/Ni O. Journal of Electronic Materials 50(4): 2268-2276
Badwaik, V.; Badwaik, D.; Rewatkar, K.; Nanoti, V. 2018: Structural, Morphological and Temperature Dependent Dielectric Studies of Sr-Cu Nano Sized Hexa Ferrites. Materials Today: Proceedings 5(10): 22706-22711
Vijaya Lakshmi, D.; Vikram Babu, B.; Sushma Reddi, M.; Raju, M.K.; Rama Krishna, A.; Samatha, K.; Lakshmi Narayana, P.; ; , 2020: Structural, Morphological and Vibrational Studies of Magnesium Doped Lithium Titanate Anode Materials for Li-Ion Batteries. International Journal of Advanced Research 8(11): 386-394
Astik, N.; Jha, P.K.; Pratap, A. 2017: Structural, Morphological, Differential Scanning Calorimetric and Thermogravimetric Studies of Ball Milled Fe Doped Nanoscale La0.67Sr0.33Mn O3 Manganite. Journal of Electronic Materials 47(3): 1937-1943
John, J.; Suresh, S.; Savitha Pillai, S.; Philip, R.; Mahadevan Pillai, V.P. 2021: Structural, Morphological, Magnetic and Optical Limiting Performance of Ni Doped Ba Sn O3. Journal of Electronic Materials 50(10): 5868-5880
Gaddy, M.; Kuryatkov, V.; Meyers, V.; Mauch, D.; Dickens, J.; Neuber, A.; Nikishin, S. 2018: Structural, Morphological, Optical and Electrical Properties of Bulk (0001) Ga N:Fe Wafers. MRS Advances 3(3): 179-184
Sagadevan, S.; Podder;Isha Das, J. 2016: Structural, Morphological, Optical and Electrical Properties of Pb Se Thin Films Grown by Chemical Bath Deposition. Advanced Materials Letters 7(5): 410-413
Patil, S.L.; Pawar, S.G.; Chougule, M.A.; Raut, B.T.; Godse, P.R.; Sen, S.; Patil, V.B. 2012: Structural, Morphological, Optical, and Electrical Properties of PANi-Zn O Nanocomposites. International Journal of Polymeric Materials 61(11): 809-820
Basith, N.M.; Vijaya, J.J.; Kennedy, L.J. 2014: Structural, Morphological, Optical, and Magnetic Properties of Fe-Doped Cu O Nanostructures. Advanced Materials Research 938: 134-139
Issaoui, H.; Benali, A.; Bejar, M.; Dhahri, E.; Santos, R.F.; Kuş, N.; Nogueira, B.A.; Fausto, R.; Costa, B.F.O. 2018: Structural, Morphological, Raman, and Mössbauer Studies on (La0.8Ca0.2)1−x Bix Fe O3 (x = 0.0, 0.1, and 0.2) Compounds. Journal of Superconductivity and Novel Magnetism 32(6): 1571-1582
Durairajan, A.; Thangaraju, D.; Valente, M.; Moorthy Babu, S. 2015: Structural, Morphological, Vibrational, and Photoluminescence Study of Sol–Gel-Synthesized Tm3+:Na Gd(WO4)2 Blue Phosphors. Journal of Electronic Materials 44(11): 4199-4206
Abinaya, A.; Jeyaprakash, B.G. 2015: Structural, Morphological, XPS and Ethanol Sensing Properties of Spray Deposited Mo S2 Thin Films. Science of Advanced Materials 7(3): 463-466
Taurino, A.; Signore, M.A.; Catalano, M.; Farella, I.; Quaranta, F.; Di Giulio, M.; Vasanelli, L.; Siciliano, P. 2014: Structural, Morphological, and Chemical Properties of Cu/Ti N Versus Cu Thin Layers for HEMT Backside Metallization. IEEE Transactions on Device and Materials Reliability 14(3): 890-897
Ramay, S.M.; Rafique, H.M.; Aslam, S.; Siddiqi, S.A.; Atiq, S.; Saleem, M.; Naseem, S.; Shar, M.A. 2014: Structural, Morphological, and Magnetic Characterization of Sol-Gel Synthesized Mn Cu Zn Ferrites. IEEE Transactions on Magnetics 50(8): 1-4
Mantarcı, A. 2019: Structural, Morphological, and Optical Characterization of Ga N/p-Si Thin Films for Various Argon Flow Rates. JOM 72(1): 552-560
Gbashi, K.R.; Najim, A.A.; Muhi, M.A.H.; Salih, A.T. 2018: Structural, Morphological, and Optical Properties of Nanocrystalline (Bi2O3)1−x:(Ti O2)x Thin Films for Transparent Electronics. Plasmonics 14(3): 623-630
Rajesh Kanna, R.; Sakthipandi, K. 2019: Structural, Morphological, and Optomagnetic Properties of La/Cu/Cu-Mn Ferrite Ternary Nanocomposites. Journal of Electronic Materials 49(2): 1110-1119
Tholkappiyan, R.; Anandkumar, G.; Azarudeen, L.M.; Vishista, K. 2014: Structural, Morphology and Luminescence Studies on Mn-Doped Zn O Phosphor. Advanced Science, Engineering and Medicine 6(11): 1205-1209
Mohaidat, Q.I.; Lataifeh, M.; Mahmood, S.H.; Bsoul, I.; Awawdeh, M. 2017: Structural, Mössbauer Effect, Magnetic, and Thermal Properties of Gadolinium Erbium Iron Garnet System Gd3−x Er x Fe5 O 12. Journal of Superconductivity and Novel Magnetism 30(8): 2135-2141
Karanjkar, M.; Tarwal, N.; Vaigankar, A.; Patil, P. 2013: Structural, Mössbauer and electrical properties of nickel cadmium ferrites. Ceramics International 39(2): 1757-1764
Sharma, P.; Rocha, R.A.; de Medeiros, S.N.; Paesano Jr, A.; Hallouche, B. 2007: Structural, Mössbauer and magnetic studies on Mn-substituted barium hexaferrites prepared by high energy ball milling. Hyperfine Interactions 175(1-3): 77-84
Sauer, M.; Raetz, S.; Ohm, V.; Merkens, M.; Sauer, C.; Schmitz, D.; Schilder, H.; Lueken, H. 1997: Structural, Mössbauer spectroscopic and magnetochemical investigations into Eu Pt5, Tm Pt5 and Tm Pt3 synthesized from platinum and gaseous lanthanide. Journal of Alloys and Compounds 246(1-2): 147-154
Lopez, C.; Alvarez, S.; Solans, X.; Font-Altaba, M. 1986: Structural, NMR and theoretical study of delocalization in cobaloximes. Inorganica Chimica Acta 111(2): L19-L21
Raghavendra, B.; Sankarappa, T.; Malge, A. 2020: Structural, Optical Absorption and Conductivity of PIn/Co3O4 Composites. Journal of Inorganic and Organometallic Polymers and Materials 30(9): 3586-3594
Kundu, S.; Sain, S.; Kar, T.; Pradhan, S.K. 2016: Structural, Optical Characterization and Growth Mechanism of Kadamba Flower like Zn O Nanocrystals Synthesized by a Simple Chemical Route. ChemistrySelect 1(13): 3705-3712
Lipunova, G.N.; Nosova, E.V.; Charushin, V.N.; Chupakhin, O.N. 2014: Structural, Optical Properties, and Biological Activity of Complexes Based on Derivatives of Quinoline, Quinoxaline, and Quinazoline with Metal Centers from Across the Periodic Table. Comments on Inorganic Chemistry 34(5-6): 142-177
Vidyadharan, V.; Vasudevan, P.; Karthika, S.; Joseph, C.; Unnikrishnan, N.V.; Biju, P.R. 2015: Structural, Optical and AC Electrical Properties of Ce3+-Doped Ti O2–Si O2 Matrices. Journal of Electronic Materials 44(8): 2754-2761
Murria, M.; Sharma, R.K. 2021: Structural, Optical and Acoustical Characterization of Polyvinyl Alcohol Dispersed Cadmium Selenide Nanocomposites. Journal of Macromolecular Science, Part B 60(11): 928-946
Mungchamnankit, A.; Sornsanit, K.; Horprathum, M.; Chananonnawathorn, C.; Eiamchai, P.; Aiempanakit, K.; Kaewkhao, J. 2013: Structural, Optical and Anti-Bacterial Properties of Ti O2 Thin Films Prepared by DC Reactive Magnetron Sputtering. Advanced Materials Research 770: 283-286
Sirelkhatim, A.H.; Mahmud, S.; Azman, S.; Dasmawati, M.; Habsah, H.; Sendi, R.K.; Bakhori, S.K.M.; Ann, L.C.; Rahman, M.A.A. 2013: Structural, Optical and Antibacterial Properties of Zn O Commercial Powder Grades. Advanced Materials Research 795: 19-23
Ambika, S.; Sukantha, T.A.; Saravanan, K.; Gopinath, S.; Pachamuthu, P. 2017: Structural, Optical and Catalytic Properties of Co Al2O4 Toward Liquid Phase Oxidation of Benzyl Alcohol. Advanced Science, Engineering and Medicine 9(5): 432-438
Painuly, D.; Singhal, R.; Kandwal, P.; Nagpure, I.M. 2020: Structural, Optical and Decay Properties of Zinc(II) 8-Hydroxyquinoline and its Thin Film. Journal of Electronic Materials 49(10): 6096-6106
Salinigopal, M.S.; Gopakumar, N.; Anjana, P.S.; SureshKumar, B. 2019: Structural, Optical and Dielectric Properties of Aluminoborosilicate Glasses. Journal of Electronic Materials 49(1): 695-704
Ganesh, V.; Kumar, B.R.; Bitla, Y.; Yahia, I.S.; AlFaify, S. 2021: Structural, Optical and Dielectric Properties of Nd Doped Ni O Thin Films Deposited with a Spray Pyrolysis Method. Journal of Inorganic and Organometallic Polymers and Materials 31(6): 2691-2699
Krishnakumar, V.; Shanmugam, G. 2012: Structural, Optical and Dielectric Properties of Pb S-PVA-PEG Nanocomposite Film. Science of Advanced Materials 4(12): 1247-1253
Acosta-Humánez, F.; Montes-Vides, L.; Almanza, O. 2019: Structural, Optical and EPR Study of Mn-Doped Zn O Nanocrystals. Journal of Low Temperature Physics 195(5-6): 391-402
Acosta-Humánez, F.; Magon, C.J.; Montes-Vides, L.; Almanza, O. 2020: Structural, Optical and EPR Study of Zn1−x Fex O Nanocrystals. Journal of Low Temperature Physics 202(1-2): 29-47
Mamat, M.H.; Halim, A.; Sahdan, M.Z.; Amizam, S.; Khusaimi, Z.; Rusop, M. 2013: Structural, Optical and Electrical Characteristics of Polycrystalline Zn O Thin Film Prepared by Sol-Gel Spin-Coating Method. Advanced Materials Research 667: 24-29
Acharya, T.; Choudhary, R.N.P. 2015: Structural, Optical and Electrical Characteristics of a La0.5K0.5Ga0.5V0.5O3 System. Journal of Electronic Materials 45(2): 947-958
Ali, R.S.; Hussain, S.S.; Riaz, S.; Naseem, S. 2015: Structural, Optical and Electrical Characterization of Fe3O4 Thin Films Prepared using PVD Magnetron Sputtering (RF). Materials Today: Proceedings 2(10): 5543-5547
Mohammadi, S.; Abdizadeh, H.; Golobostanfard, M.R. 2012: Structural, Optical and Electrical Characterization of Mo Doped In2O3 Thin Films Prepared via Sol-Gel Spin Coating Technique. Advanced Materials Research 576: 607-610
Khan, S.A.; Tiwari, G.; Tripathi, R.P.; Alvi, M.A.; Khan, Z.H.; Al-Agel, F.A. 2014: Structural, Optical and Electrical Characterization of Polycrystalline Ga15Te85−x Znx Nano-Structured Thin Films. Advanced Science Letters 20(7): 1715-1718
Zakhvalinskii, V.S.; Nguyen, T.T.H.; Pham, T.T.; Dang, N.T.; Piliuk, E.A.; Taran, S.V. 2017: Structural, Optical and Electrical Conductivity Properties of Stannite Cu2Zn Sn S4. Journal of Electronic Materials 46(6): 3523-3530
Kumar, A.; Khan, B.; Singh, G.; K. Singh, M.; Kumar, U. 2021: Structural, Optical and Electrical Properties of Ca Sn O3 and Ca0.98Nd0.02Sn0.98Ti0.02O3 Synthesized using Sol-Gel Method. Advanced Materials Letters 12(3): 1-9
Murali, K.R.; Balasubramanian, M. 2019: Structural, Optical and Electrical Properties of Cdx Zn1-x Se Films. ECS Transactions 13(10): 53-58
Shabannia, R. 2017: Structural, Optical and Electrical Properties of Cu-Doped Zn O Nanorods Grown on Flexible Polyethylene Terephthalate Substrate. Iranian Journal of Science and Technology, Transactions A: Science 42(4): 2349-2353
Liang, J.; Su, H.; Kuo, C.; Kao, S.; Cui, J.; Wu, Y.; Huang, J. 2014: Structural, Optical and Electrical Properties of Electrodeposited Sb-Doped Zn O Nanorod Arrays. Electrochimica Acta 125: 124-132
Jang, C.; Jiang, Q.; Lu, J.; Ye, Z. 2015: Structural, Optical and Electrical Properties of Ga Doped Zn O/Cu grid/Ga Doped Zn O Transparent Electrodes. Journal of Materials Science-Technology 31(11): 1108-1110
Sofi, A.H.; Shah, M.A.; Asokan, K. 2017: Structural, Optical and Electrical Properties of ITO Thin Films. Journal of Electronic Materials 47(2): 1344-1352
Dimova-Malinovska, D.; Lovchinov, K.; Petrov, M.; Karashanova, D.; Angelov, O. 2014: Structural, Optical and Electrical Properties of Multilayer Stacks Zn O:Al/Ag/Zn O:Al and Zr O2/Ag/Zr O2. Energy Procedia 60: 143-147
Saurdi, I.; Mamat, M.H.; Malik, M.; Ishak, A.; Rusop, M. 2015: Structural, Optical and Electrical Properties of Multiple Layers Nano-Structured Zinc Oxide Thin Film. Advanced Materials Research 1109: 401-404
Saloum, S.; Alkhaled, B. 2011: Structural, Optical and Electrical Properties of Plasma Deposited Thin Films from Hexamethyldisilazane Compound. Acta Physica Polonica A 119(3): 369-373
Kumar, U.; Upadhyay, S. 2019: Structural, Optical and Electrical Properties of Ruddlesden Popper Oxide Ba2Sn O4. Journal of Electronic Materials 48(8): 5279-5293
Bedia, F.; Bedia, A.; Aillerie, M.; Maloufi, N.; Benyoucef, B. 2015: Structural, Optical and Electrical Properties of Sn-doped Zinc Oxide Transparent Films Interesting for Organic Solar Cells (OSCs). Energy Procedia 74: 539-546
Murali, K.R. 2014: Structural, Optical and Electrical Properties of Spray Pyrolysed Ti-Doped Zn O Films. ECS Transactions 64(15): 35-40
Gunjal, S.D.; Khollam, Y.B.; Arote, S.A.; Jadkar, S.R.; Shelke, P.N.; Mohite, K.C. 2015: Structural, Optical and Electrical Properties of Spray Pyrolysis Deposited Cd S Films. Macromolecular Symposia 347(1): 9-15
Maarof, S.; Abdullah, S.; Rusop Mahmood, M. 2013: Structural, Optical and Electrical Properties of Titanium Dioxide Thin Films with Different Molarity. Advanced Materials Research 667: 58-62
Douayar, A.; Diaz, R.; Prieto, P.; Abd-Lefdil, M. 2011: Structural, Optical and Electrical Properties of Zn O Sprayed Thin Films Doped with Fluorine. Advanced Materials Research 324: 253-256
Rogachev, A.; Semchenko, A.; Sidsky, V.; Gaishun, V.; Kovalenko, D.; Gremenok, V.; Zaretskaya, H.; Sudnik, L. 2016: Structural, Optical and Electrical Properties of Zn O: Al Thin Films Synthesized by Sol-gel Method. 3rd International Conference on Nanotechnologies and Biomedical Engineering: 111-114
Devangamath, S.S.; Lobo, B. 2019: Structural, Optical and Electrical Studies on Hybrid Material of in Situ Formed Silver sulfide in Polymer Blend Matrix. Journal of Inorganic and Organometallic Polymers and Materials 29(5): 1466-1475
Wu, Z.F.; Xu, Q.Y.; Wu, X.M.; Zhuge, L.J.; Hong, B.; Chen, Q. 2010: Structural, Optical and Electronic Properties of Cu-Doped Zn O Films Synthesized by RF Magnetron Sputtering. Advanced Materials Research 97-101: 1198-1202
Annapureddy, V.; Pathak, N.; Nath, R. 2012: Structural, Optical and Ferroelectric Properties of Bi Co O3:Bi Fe O3 Composite Films. Advanced Materials Research 585: 260-264
Sandeep, K.; Thomas, J.K.; Solomon, S. 2018: Structural, Optical and Impedance Spectroscopic Characterizations of Nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr). Journal of Electronic Materials 47(4): 2417-2428
Fang, B.; Qian, K.; Miao, F.; Yuan, N.; Ding, J.; Zhao, X.; Xu, H.; Luo, H. 2012: Structural, Optical and Improved Electrical Properties of Relaxor-Based Single Crystals After Poling. Journal of the American Ceramic Society 95(6): 1949-1954
Prabha, K.; Babu, M.R.; Sagayaraj, P. 2012: Structural, Optical and Laser Damage Threshold Studies of 1, 10 Phenanthraline Doped Potassium Penta Borate (KB5) Single Crystals. Advanced Materials Research 584: 29-32
Sankara Reddy, B.; Venkatramana Reddy, S.; Koteeswara Reddy, N.; Prabhakara Reddy, Y. 2014: Structural, Optical and Magnetic Properties of (Fe, Ag) Co-doped Zn O Nanostructures. Advanced Materials Letters 5(4): 199-205
Majid, A.; Iqbal, J.; Ali, A. 2010: Structural, Optical and Magnetic Properties of Ce–Ga N Based Diluted Magnetic Semiconductor. Journal of Superconductivity and Novel Magnetism 24(1-2): 585-590
Kayani, Z.N.; Nazir, F.; Riaz, S.; Zia, R.; Naseem, S. 2015: Structural, Optical and Magnetic Properties of Mn Zn O Thin Films. Materials Today: Proceedings 2(10): 5166-5169
GopalaraoTanguturi, R.; Bora, T.; Ravi, S.; Pamu, D. 2014: Structural, Optical and Magnetic Properties of Nd0.7Sr0.3Mn O3Thin Films. Physics Procedia 54: 70-74
Heiba, Z.K.; Mohamed, M.B.; Imam, N.G. 2019: Structural, Optical and Magnetic Properties of PANI/Se0.95Fe0.05 Nanocomposites. Journal of Superconductivity and Novel Magnetism 32(9): 2981-2986
Swapna, P.; Venkatramana Reddy, S.; Sreenivasulu, B. 2019: Structural, Optical and Magnetic Properties of Pristine, (Mn, Al) co-doped Zn O Nanocrystallites Synthesized via co-Precipitation Method. Advanced Materials Letters 10(11): 819-824
Heiba, Z.K.; Mohamed, M.B. 2019: Structural, Optical and Magnetic Properties of Zn S Co-doped with Cd and Fe. Journal of Inorganic and Organometallic Polymers and Materials 30(3): 879-888
Anjum, S.; Nazli, H.; Bashir, F.; Mahmood, K. 2015: Structural, Optical and Magnetic Properties of Zn0.5Cux Co0.5-x Dilute Magnetic Semiconductors. Materials Today: Proceedings 2(10): 5552-5558
Abood, I.; Gadalla, A.; Elokr, M. 2017: Structural, Optical and Magnetic properties of Ni-doped Zn O synthesized by Co-precipitation method. Journal of Nanotechnology and Materials Science 4(1): 1-8
Li, Y.; Li, Y.; Yang, Z.; Zhang, X.; Liu, J.; Zeng, F.; Yao, J.; Li, C.; Lin, H.; Su, Z.; Mahadevan, C.K. 2020: Structural, Optical and Mechanical Properties and Cracking Factors of Large-Sized KBr:Ce3+ Single Crystal. Journal of Electronic Materials 49(8): 4785-4793
Mathangi, R.; Prabhakaran, A.; Jayanthi, S.; Thamizharasan, K. 2018: Structural, Optical and Mechanical Studies on a Novel Nonlinear Optical Material: L-Arginine Potassium Penta Borate(LAKB5) Crystals. Materials Today: Proceedings 5(9): 17730-17736
Varshney, M.; Sharma, A.; Kumar, R.; Verma, K.D. 2014: Structural, Optical and Morphological Properties of Different Techniques Grown Ce O2 Thin Films. Advanced Science, Engineering and Medicine 6(2): 208-213
Balasundraprabhu, R.; Muthukumarasamy, N.; Monakhov, E.; Svensson, B. 2013: Structural, Optical and Morphological Studies on Nanostructure ITO Thin Films. Advanced Materials Research 678: 140-143
Asiri, S.; Amir, M.; Güner, S.; Gungunes, H.; Batoo, K.M.; Sertkol, M.; Imran, A.; Baykal, A. 2018: Structural, Optical and Mössbauer Study of Ba1 − x Cux Fe12O19 (0.5 ≤ x) Nano Hexaferrites. Journal of Inorganic and Organometallic Polymers and Materials 28(4): 1446-1456
Men, C.L.; Li, H.Q.; Zhang, H. 2011: Structural, Optical and Photocatalytic Photodegradation Properties of Zn1−x Mnx O Prepared by the Sol-Gel Process. Advanced Materials Research 239-242: 2962-2967
Doula, A.; Bensaha, R.; Beldjebli, O. 2021: Structural, Optical and Photocatalytic Properties of Ba-Doped Ti O2 Thin Films. Acta Physica Polonica A 140(5): 421-426
Kulkarni, J.; Ravishankar, R.; Nagabhushana, H.; Anantharaju, K.; Basavaraj, R.; Sangeeta, M.; Nagaswarupa, H.; L. Renuka, 2017: Structural, Optical and Photocatalytic Properties of Mg O/Cu O Nanocomposite Prepared by a Solution Combustion Method. Materials Today: Proceedings 4(11): 11756-11763
Tuscharoen, S.; Kaewkhao, J.; Limsuwan, P.; Chewpraditkul, W. 2012: Structural, Optical and Radiation Shielding Properties of Ba O-B2O3-Rice Husk Ash Glasses. Procedia Engineering 32: 734-739
Ji, H.; Cai, C.; Pang, L.; Lin, D.; Liu, W. 2017: Structural, Optical and Room Temperature Ferromagnetic Properties of Co-Doped Zinc Oxide Nanorods Prepared by Sol–Gel Method. Nanoscience and Nanotechnology Letters 9(12): 1953-1958
Ali, I.M.; Rzaij, J.M.; Abbas, Q.A.; Ibrahim, I.M.; Alatta, H.J. 2018: Structural, Optical and Sensing Behavior of Neodymium-Doped Vanadium Pentoxide Thin Films. Iranian Journal of Science and Technology, Transactions A: Science 42(4): 2375-2386
Hajjaji, A.; Labidi, A.; Gaidi, M.; Rabha, M.B.; Smirani, R.; Bejaoui, A.; Bessais, B.; Khakani, M.E. 2011: Structural, Optical and Sensing Properties of Cr-Doped Ti O2 Thin Films. Sensor Letters 9(5): 1697-1703
Atay, F.; Durmaz, D. 2020: Structural, Optical and Surface Properties of Multilayer Anatase-Ti O2 Films Grown by Sol–Gel Spin Coating Technique. Journal of Electronic Materials 49(9): 5542-5551
Vincent Femilaa, R.; Victor Antony Raj, M.; Madhavan, J. 2019: Structural, Optical and Thermal Behaviour of L-Phenylalanine L-Phenylalaninium Perchlorate (LPAPCl) a Nonlinear Optical Single Crystal. Materials Today: Proceedings 8: 470-475
Seung Kwon, Y.; Lee, J.; Hwang, G.; Gyu Jeong, Y. 2020: Structural, Optical and Thermal Characterization of Wholly Aromatic Poly(ether amide)s Synthesized by Phosphorylation‐Based Condensation Polymerization. ChemistrySelect 5(34): 10425-10431
Chapi, S.; S., R.; V., M.; K., A.; Thomas, S.; H., D. 2016: Structural, Optical and Thermal Study on PEO-Based Solid Polymer Electrolyte for Optical Device Applications. Macromolecular Symposia 361(1): 129-135
Mathew, C.; Solomon, S.; Thomas, J. 2015: Structural, Optical and Vibrational Characterization of Infrared - transparent Nanostructured Mg Al2O4 Synthesized by a Modified Combustion Technique. Materials Today: Proceedings 2(3): 954-958
Sultan, K.; Samad, R.; A. Najar, F.; Abass, S.; Jahan, S.; Rashid Rather, M.; Ikram, M. 2021: Structural, Optical and dielectric properties of Sr doped la VO4. Advanced Materials Letters 12(6): 1-6
Kayed, T.S.; Qasrawi, A.F.; Elsayed, K.A. 2019: Structural, Optical, Dielectric and Electrical Properties of Al-Doped Zn Se Thin Films. Journal of Electronic Materials 48(6): 3519-3526
Ashraf, G.A.; Zhang, L.; Abbas, W.; Ajmal, M.; Murtaza, G.; Ahmad, M. 2019: Structural, Optical, Dielectric, and Magnetic Characteristics of Nd Ions Substituted Ba Fe11(Sn0.5Mg0.5)x O19 M-Type Hexaferrite via Co-precipitation. Journal of Superconductivity and Novel Magnetism 32(10): 3273-3284
Karatutlu, A.; Patil, B.; Seker, .; Istengir, S.; Bolat, A.; Yildirim, O.; Sevgen, Y.N.; Bakış, Y.; Ortaç, B.; Yilmaz, E.; Sapelkin, A. 2018: Structural, Optical, Electrical and Electrocatalytic Activity Properties of Luminescent Organic Carbon Quantum Dots. ChemistrySelect 3(17): 4730-4737
Mohammed, M.A. 2020: Structural, Optical, Electrical and Gas Sensor Properties of Zr O2 Thin Films prepared by Sol-Gel Technique. NeuroQuantology 18(3): 22-27
Waseem, S.; Anjum, S.; Mustafa, L.; Bashir, F.; Mohsin, N. 2015: Structural, Optical, Electrical and Magnetic Properties of Ti0.9Co0.1O2, Ti0.9Cr0.1O2, Ti0.9Cr0.04Co0.06O2. Materials Today: Proceedings 2(10): 5378-5383
Abdalsalam, A.H.; Ati, A.A.; Abduljabbar, A.; Hussein, T.A. 2018: Structural, Optical, Electrical and Magnetic Studies of PANI/Ferrite Nanocomposites Synthesized by PLD Technique. Journal of Inorganic and Organometallic Polymers and Materials 29(4): 1084-1093
Mansour, A.M.; El-Taweel, F.M.A.; Abu El-Enein, R.A.N.; El-Menyawy, E.M. 2017: Structural, Optical, Electrical and Photoelectrical Properties of 2-Amino-4-(5-bromothiophen-2-yl)-5,6-dihydro-6-methyl-5-oxo-4H-pyrano[3,2-c] quinoline-3-carbonitrile Films. Journal of Electronic Materials 46(12): 6957-6964
Shafique, M.; Iqbal, T.; Khan, M.A.; Naeem, M.; Ahmed, I.; Ahmad, P.; Mahmood, H. 2020: Structural, Optical, Electrical, and Photocatalytic Properties of Nickel Cobaltite (Ni Co2O4) Nanocomposite Fabricated by a Facile Microplasma Electrochemical Process. Journal of Electronic Materials 50(2): 629-639
Humayun, Q.; Kashif, M.; Hashim, U. 2013: Structural, Optical, Electrical, and Photoresponse Properties of Postannealed Sn-Doped Zn O Nanorods. Journal of Nanomaterials 2013: 1-8
Thang, D.V.; Nguyen, V.Q.; Hung, N.M.; Oanh, L.T.M.; Khang, N.C.; Tu, B.D.; Thao, D.T.X.; Van Minh, N. 2020: Structural, Optical, Ferroelectric and Ferromagnetic Properties of Bi1−x Gdx Fe O3 Materials. Journal of Electronic Materials 49(7): 4443-4449
Jagadeeshwaran, C.; Murugaraj, R. 2020: Structural, Optical, Magnetic, and Electrical Properties of Ni0.5Co0.5Al2O4 System. Journal of Superconductivity and Novel Magnetism 33(6): 1765-1772
Poornashri Mathangi, R.; Prabakaran, A.; Nalini Jayanthi, S.; Thamizharasan, K. 2019: Structural, Optical, Mechanical and Laser Damage Threshold Studies on an active Nonlinear Optical Material: Potassium Thiourea Bromide (KTB) in a Novel Crystal System. Materials Today: Proceedings 18: 3291-3297
Parthasarathy, V.; Nakandhrakumar, R.S.; Mahalakshmi, S.; Senthil kumar, P.; Sundaresan, B. 2020: Structural, Optical, Thermal and Non-isothermal Decomposition Behavior of PMMA Nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials 30(8): 2998-3013
Subramanian, Y.; Ramasamy, V.; Gubendiran, R.K.; Srinivasan, G.R.; Arulmozhi, D. 2018: Structural, Optical, Thermal and Photocatalytic Dye Degradation Properties of Bi Fe O3–WO3 Nanocomposites. Journal of Electronic Materials 47(12): 7212-7223
Abdelrazek, E.M.; Asnag, G.M.; Oraby, A.H.; Abdelghany, A.M.; Alshehari, A.M.; Gumaan, M.S. 2020: Structural, Optical, Thermal, Morphological and Electrical Studies of PEMA/PMMA Blend Filled with Co Cl2 and Li Br as Mixed Filler. Journal of Electronic Materials 49(10): 6107-6122
Waterhouse, G.I.N.; Chen, W.; Chan, A.; Jin, H.; Sun-Waterhouse, D.; Cowie, B.C.C. 2015: Structural, Optical, and Catalytic Support Properties of γ-Al2O3 Inverse Opals. The Journal of Physical Chemistry C 119(12): 6647-6659
Riaz, S.; Sajid-ur-Rehman; Abutalib, M.; Naseem, S. 2016: Structural, Optical, and Dielectric Properties of Aluminum Oxide Nanofibers Synthesized by a Lower-Temperature Sol–Gel Approach. Journal of Electronic Materials 45(10): 5185-5197
Zeyada, H.M.; Zidan, H.M.; Abdelghany, A.M.; Abbas, I. 2017: Structural, Optical, and Dielectric Properties of Azure B Thin Films and Impact of Thermal Annealing. Journal of Electronic Materials 46(7): 4304-4311
Tiwari, S.; Saleem, M.; Mishra, A.; Varshney, D. 2019: Structural, Optical, and Dielectric Studies on Sr-Doped Biferroic YCr O3. Journal of Superconductivity and Novel Magnetism 32(8): 2521-2531
Kumar, R.; Chand, S. 2014: Structural, Optical, and Electrical Characterization of Al/n-Zn O/p-Si/Al Heterostructures. Journal of Electronic Materials 44(1): 194-201
Tadjer, M.J.; Mastro, M.A.; Mahadik, N.A.; Currie, M.; Wheeler, V.D.; Freitas Jr., J.A.; Greenlee, J.D.; Hite, J.K.; Hobart, K.D.; Eddy Jr., C.R.; Kub, F.J. 2016: Structural, Optical, and Electrical Characterization of Monoclinic β-Ga2O3 Grown by MOVPE on Sapphire Substrates. Journal of Electronic Materials 45(4): 2031-2037
Janošević, V.; Mitrić, M.; Savić, J.; Validžić, I.L. 2015: Structural, Optical, and Electrical Properties of Applied Amorphized and Polycrystalline Sb2S3 Thin Films. Metallurgical and Materials Transactions A 47(3): 1460-1468
Reghima, M.; Akkari, A.; Guasch, C.; Kamoun-Turki, N. 2015: Structural, Optical, and Electrical Properties of Sn S:Ag Thin Films. Journal of Electronic Materials 44(11): 4392-4399
Garg, A.; Tomar, M.; Gupta, V. 2014: Structural, Optical, and Electrical Properties of Thin Films of Bismuth Tri-Iodide. Advanced Science Letters 20(7): 1442-1445
Melo, A.H.N.; Silva, P.B.; Macedo, M.A. 2014: Structural, Optical, and Electrical Properties of Zn O/Nb/Zn O Multilayer Thin Films. Advanced Materials Research 975: 238-242
Ghosh, M.; Padma, N.; Tewari, R.; Debnath, A.K. 2013: Structural, Optical, and Electrical Properties of in Situ Synthesized Zn O–Cu Pc Nanocomposites. The Journal of Physical Chemistry C 118(1): 691-699
Murugan, S.; Murali, K. 2014: Structural, Optical, and Electrical Studies on Pulse Plated Ag in Se_2 Films. Acta Physica Polonica A 126(3): 727-732
Hyung, K.; Noh, J.; Lee, W.; Han, S. 2008: Structural, Optical, and Electronic Properties of Self-Assembled Di-(3-diaminopropyl)-viologen on Indium Tin Oxide Electrode Surfaces. The Journal of Physical Chemistry C 112(46): 18178-18182
Madhavi, V.; Kondaiah, P.; Hussain, O.M.; Uthanna, S. 2012: Structural, Optical, and Luminescence Properties of Reactive Magnetron Sputtered Tungsten Oxide Thin Films. ISRN Optics 2012: 1-8
Chernenko, K.A.; Gorokhova, E.I.; Eronko, S.B.; Sandulenko, A.V.; Venevtsev, I.D.; Wieczorek, H.; Rodnyi, P.A. 2018: Structural, Optical, and Luminescent Properties of Zn O:Ga and Zn O:in Ceramics. IEEE Transactions on Nuclear Science 65(8): 2196-2202
Lee, D.J.; Lee, S.; Lee, Y.; Kwon, Y.H.; Shon, Y.; Yoon, I.T.; Kwak, D.W.; Xiao, F.; Kang, T.W.; Kim, D.Y. 2017: Structural, Optical, and Magnetic Properties of Cd S:Cr (Cr ~ 2 at.%) Nanobelts. Journal of Nanoscience and Nanotechnology 17(10): 7560-7564
Bouaine, A.; Brihi, N.; Schmerber, G.; Ulhaq-Bouillet, C.; Colis, S.; Dinia, A. 2007: Structural, Optical, and Magnetic Properties of Co-doped Sn O2 Powders Synthesized by the Coprecipitation Technique. The Journal of Physical Chemistry C 111(7): 2924-2928
Kayani, Z.N.; Afzal, A.; Saleemi, F.; Riaz, S.; Naseem, S. 2014: Structural, Optical, and Magnetic Properties of Cobalt-Doped Dip Coated Zn O Films. IEEE Transactions on Magnetics 50(8): 1-4
Suchomski, C.; Reitz, C.; Brezesinski, K.; Tavares de Sousa, C.; Rohnke, M.; Iimura, K.; Esteves de Araujo, J.P.; Brezesinski, T. 2011: Structural, Optical, and Magnetic Properties of Highly Ordered Mesoporous MCr2O4 and MCr2–x Fex O4 (M = Co, Zn) Spinel Thin Films with Uniform 15 nm Diameter Pores and Tunable Nanocrystalline Domain Sizes. Chemistry of Materials 24(1): 155-165
Asemi, M.; Mortezapour, B.; Ghanaatshoar, M. 2018: Structural, Optical, and Magnetic Properties of Hydrothermally Grown Fe-Doped Zn O Nanorod Arrays on Glass Substrate. Journal of Superconductivity and Novel Magnetism 32(2): 269-275
Tuan, N.H.; Bac, L.H.; Cuong, L.V.; Van Thiet, D.; Van Tam, T.; Dung, D.D. 2017: Structural, Optical, and Magnetic Properties of Lead-Free Ferroelectric Bi0.5K0.5Ti O3 Solid Solution with Bi Fe O3 Materials. Journal of Electronic Materials 46(6): 3472-3478
Srinivas, K.; Vithal, M.; Sreedhar, B.; Raja, M.M.; Reddy, P.V. 2009: Structural, Optical, and Magnetic Properties of Nanocrystalline Co Doped Sn O2 Based Diluted Magnetic Semiconductors. The Journal of Physical Chemistry C 113(9): 3543-3552
Zhou, C.; Jian, J.; Wang, W.; Wang, G.; Song, B.; Wu, R.; Li, J. 2014: Structural, Optical, and Magnetic Properties of Nd-Doped Ga N Powders. Journal of the American Ceramic Society 97(11): 3576-3581
Nabi, G.; Rehman, S.; Tahir, M.B.; Malik, N.; Yousaf, R.; Maraj, M.; Rizwan, M.; Tanveer, M. 2020: Structural, Optical, and Magnetic Properties of Pure and Vanadium-Doped Ni O Microstructures for Spintronics Applications. Journal of Superconductivity and Novel Magnetism 34(7): 1801-1806
Goktas, A.; Mutlu, . 2016: Structural, Optical, and Magnetic Properties of Solution-Processed Co-Doped Zn S Thin Films. Journal of Electronic Materials 45(11): 5709-5720
Rejmak, P. 2018: Structural, Optical, and Magnetic Properties of Ultramarine Pigments: a DFT Insight. The Journal of Physical Chemistry C 122(51): 29338-29349
Dung, D.D.; Hung, N.T. 2020: Structural, Optical, and Magnetic Properties of the new (1-x)Bi0.5Na0.5Ti O3 + x Mg Co O3-δ Solid Solution System. Journal of Superconductivity and Novel Magnetism 33(5): 1249-1256
Sheoran, N.; Kumar, A.; Kumar, V.; Banerjee, A. 2020: Structural, Optical, and Multiferroic Properties of Yttrium (Y3+)-Substituted Bi Fe O3 Nanostructures. Journal of Superconductivity and Novel Magnetism 33(7): 2017-2029
Gracia, F.; Holgado, J.P.; Caballero, A.; Gonzalez-Elipe, A.R. 2004: Structural, Optical, and Photoelectrochemical Properties of Mn+−Ti O2 Model Thin Film Photocatalysts. The Journal of Physical Chemistry B 108(45): 17466-17476
Poznyak, S.K.; Talapin, D.V.; Kulak, A.I. 2001: Structural, Optical, and Photoelectrochemical Properties of Nanocrystalline Ti O2−In2O3 Composite Solids and Films Prepared by Sol−Gel Method. The Journal of Physical Chemistry B 105(21): 4816-4823
Bhimireddi, R.; Ponraj, B.; Varma, K.B.R. 2015: Structural, Optical, and Piezoelectric Response of Lead‐Free Ba 0.95 Mg 0.05 Zr 0.1 Ti 0.9 O 3 Nanocrystalline Powder. Journal of the American Ceramic Society 99(3): 896-904
Sliwa, M.; Spangenberg, A.; Malfant, I.; Lacroix, P.G.; Métivier, R.; Pansu, R.B.; Nakatani, K. 2008: Structural, Optical, and Theoretical Studies of a Thermochromic Organic Crystal with Reversibly Variable Second Harmonic Generation. Chemistry of Materials 20(12): 4062-4068
Yuan, G.; Huang, S.; Qin, S.; Wu, X.; Ding, H.; Lu, A. 2019: Structural, Optical, and Thermal Properties of Cs 2 Sn i 6 – x Br x Mixed Perovskite Solid Solutions. European Journal of Inorganic Chemistry 20: 2524-2529
Melhem, A.; De Sousa Meneses, D.; Andreazza-Vignolle, C.; Defforge, T.; Gautier, G.; Sauldubois, A.; Semmar, N. 2017: Structural, Optical, and Thermophysical Properties of Mesoporous Silicon Layers: Influence of Substrate Characteristics. The Journal of Physical Chemistry C 121(14): 7821-7828
Cloet, V.; Raw, A.; Poeppelmeier, K.R.; Trimarchi, G.; Peng, H.; Im, J.; Freeman, A.; Perry, N.H.; Mason, T.O.; Zakutayev, A.; Ndione, P.F.; Ginley, D.S.; Perkins, J.D. 2012: Structural, Optical, and Transport Properties of α- and β-Ag3VO4. Chemistry of Materials 24(17): 3346-3354
Lahlouh, B.I.; Ikhmayies, S.J.; Juwhari, H.K. 2018: Structural, Optical, and Vibrational Properties of Zn O Microrods Deposited on Silicon Substrate. Journal of Electronic Materials 47(8): 4455-4462
Chauhan, S.S.; Jasra, R.V.; Sharma, A.L. 2014: Structural, Optical, and p H-Stimulus Response Properties of Cresol Red Immobilized Nanocomposite Silica Films Derived by a Sol–Gel Process Employing Different Synthetic Routes. Industrial-Engineering Chemistry Research 53(49): 18863-18872
Li, C.; Fang, G.; Liu, N.; Li, J.; Liao, L.; Su, F.; Li, G.; Wu, X.; Zhao, X. 2007: Structural, Photoluminescence, and Field Emission Properties of Vertically Well-Aligned Zn O Nanorod Arrays. The Journal of Physical Chemistry C 111(34): 12566-12571
Muller, G.; Maupin, C.; Riehl, J.; Birkedal, H.; Piguet, C.; Bünzli, J. 2003: Structural, Photophysical and Chiro‐Optical Properties of Lanthanide Complexes with a Bis(benzimidazole)pyridine‐Based Chiral Ligand. European Journal of Inorganic Chemistry 22: 4065-4072
Callaghan, S.; Vindstad, B.E.; Flanagan, K.J.; Melø, T.B.; Lindgren, M.; Grenstad, K.; Gederaas, O.A.; Senge, M.O. 2020: Structural, Photophysical, and Photobiological Studies on BODIPY‐Anthracene Dyads. ChemPhotoChem 5(2): 131-141
Jayalakshmi, S.; Guan, K.C.; Joshua, K.; Gupta, M. 2012: Structural, Physical and Mechanical Properties of Mg-Al Alloys Processed under CO2 Atmosphere. Advanced Materials Research 545: 247-250
Chand, P.; Kumar, L.; Yadav, A.; Khasa, S. 2019: Structural, Physical, Electrical and Dielectric Properties of Magnetic Glasses: x Fe2O3+(30-x)V2O5 + 30Na2O + 40B2O3 with x=0 to 15. Acta Physica Polonica A 136(6): 897-909
Stegemann, F.; Block, T.; Klenner, S.; Zhang, Y.; Fokwa, B.P.T.; Doerenkamp, C.; Eckert, H.; Janka, O. 2021: Structural, Physical, Theoretical and Spectroscopic Investigations of Mixed‐Valent Eu 2 Ni 8 Si 3 and its Structural Anti ‐Type Sr 2 Pt 3 Al 8. European Journal of Inorganic Chemistry 37: 3832-3845
Spahr, D.; König, J.; Bayarjargal, L.; Milman, V.; Persson, M.P.; Winkler, B. 2021: Structural, Physical, and Thermodynamic Properties of Aragonitic Cax Sr1–x CO3 Solid Solutions. The Journal of Physical Chemistry C 125(31): 17474-17481
He, C.; Bai, X.; Wang, J.; Liu, Y.; Lu, Y.; Liu, X.; Xiang, Y.; Xu, Z.; Chen, Y. 2020: Structural, Piezoelectric and Dielectric Properties of K0.4Na0.6Nb O3-Bi0.5Li0.5Zr O3-Ca Zr O3 Ternary Lead-Free Piezoelectric Ceramics. Journal of Electronic Materials 49(7): 4364-4371
Konieczny, K.; Śmiga, W. 2011: Structural, Pyroelectric and Electric Properties of Na1-x Lix Nb O3Ceramics. Ferroelectrics 417(1): 151-160
Khamees, H.A.; Revanna, B.N.; Madegowda, M.; Sebastian, J.; Haruvegowda, D.B.; Kumar, S. 2020: Structural, Quantum Chemical and Spectroscopic Investigations on Photophysical Properties of Fluorescent Saccharide Sensor: Theoretical and Experimental Studies. ChemistrySelect 5(17): 5227-5238
Sharma, S.; Kumar, M.; Srinet, G.; Siqueiros, J.; Herrera, O.R. 2021: Structural, Raman analysis and exchange bias effects in Mn doped multiferroic Bi0.80La0.10Ca0.10Fe1-x Mnx O3 ceramics. Ceramics International 47(5): 6834-6841
Jan, T.; Iqbal, J.; Farooq, U.; Gul, A.; Abbasi, R.; Ahmad, I.; Malik, M. 2015: Structural, Raman and optical characteristics of Sn doped Cu O nanostructures: a novel anticancer agent. Ceramics International 41(10): 13074-13079
Mehmood, F.; Iqbal, J.; Jan, T.; Mansoor, Q. 2017: Structural, Raman and photoluminescence properties of Fe doped WO3 nanoplates with anti cancer and visible light driven photocatalytic activities. Journal of Alloys and Compounds 728: 1329-1337
Luo, W.; Li, L.; Yu, S.; Sun, Z.; Zhang, B.; Xia, F. 2018: Structural, Raman spectroscopic and microwave dielectric studies on high-Q materials in Ge-doped Zn Ti Nb2O8 systems. Journal of Alloys and Compounds 741: 969-974
Singh, S.K.; Kiran, S.R.; Murthy, V. 2013: Structural, Raman spectroscopic and microwave dielectric studies on spinel Li2Zn(1−x)Nix Ti3O8 compounds. Materials Chemistry and Physics 141(2-3): 822-827
Xing, Z.; Zhu, X.; Zhu, J.; Liu, Z.; Al-Kassab, T. 2014: Structural, Raman, and Dielectric Studies on Multiferroic Mn-doped Bi1−x la x Fe O3 Ceramics. Journal of the American Ceramic Society 97(7): 2323-2330
Kim, H.W.; Kebede, M.A.; Kim, H.S. 2010: Structural, Raman, and photoluminescence characteristics of Zn O nanowires coated with Al-doped Zn O shell layers. Current Applied Physics 10(1): 60-63
Bouzidi, H.; Chaker, H.; Es-souni, M.; Chaker, C.; Khemakhem, H. 2019: Structural, Raman, ferroelectric and magnetic studies of the (1-x)BF-x BCT multiferroic system. Journal of Alloys and Compounds 772: 877-884
Li, G.; Zhou, Z.; Chen, X.; Wang, J.; Yang, H.; Yang, B.; Xu, B.; Liu, D. 2017: Structural, Relative Stable, and Electronic Properties of Pbn Snn (n = 2–12) Clusters were Investigated Using Density Functional Theory. Journal of Cluster Science 28(5): 2503-2516
Manallah, K.; Haddad, Y.; Satour, F.Z.; Zouaoui, A.; Zegadi, A. 2020: Structural, SEM and Nucleation Characterization of Electrochemically Synthesized Cu in Se2 Thin Films. Journal of Electronic Materials 49(6): 3956-3963
Lu, H.; Zhu, L.; Pyo Kim, J.; Hwan Son, S.; Hoon Park, J. 2012: Structural, Sintering and Electrical Properties of Cr-doped La0.6Sr0.4Crx Fe1−x O3−δ (x=0.10, 0.20) Oxides. Journal of Materials Science-Technology 28(7): 654-660
Leffler, J.E.; Liu, S. 1956: Structural, Solvent and Salt Effects in a Unimolecular Reaction. Journal of the American Chemical Society 78(9): 1949-1952
Navarani, D.J.; P. Selvarajan, P.S. 2011: Structural, Spectral and Mechanical Studies of Picric Acid-Doped Glycine Lithium Sulphate Crystals. Indian Journal of Applied Research 3(11): 456-458
Zaky, R.; Fekri, A.; El-Reash, Y.; Youssef, H.; Kareem., A.; , 2016: Structural, Spectral, Dft, Ion-Flotation and Biological Studies on Transition Metal Complexes of 2-Aminothiazole Derivatives. International Journal of Advanced Research 4(6): 1705-1717
Sreeja, V.; Vinitha, G.; Reshmi, R.; Jayaraj, M.; Anila, E. 2019: Structural, Spectral, Electrical and Nonlinear Optical Characterizations of r GO-PANi Composites. Materials Today: Proceedings 10: 456-465
Gokila, G.; Aarthi, R.; Ramachandra Raja, C. 2020: Structural, Spectral, and Optical Characterization of Potassium bis(2-methyllactato)borate Hemihydrate Crystal. Journal of Electronic Materials 49(10): 6130-6135
Cunha, V.R.R.; Petersen, P.A.D.; Gonçalves, M.B.; Petrilli, H.M.; Taviot-Gueho, C.; Leroux, F.; Temperini, M.L.A.; Constantino, V.R.L. 2012: Structural, Spectroscopic (NMR, IR, and Raman), and DFT Investigation of the Self-Assembled Nanostructure of Pravastatin-LDH (Layered Double Hydroxides) Systems. Chemistry of Materials 24(8): 1415-1425
Ahmad, S.I.; Kumar, D.R.; Syed, I.A.; Satar, R.; Ansari, S.A. 2016: Structural, Spectroscopic and Magnetic Study of Nanocrystalline Cerium-Substituted Magnesium Ferrites. Arabian Journal for Science and Engineering 42(1): 389-398
Eren, B.; Koçak, F..; Özdemir, N. 2018: Structural, Spectroscopic, Antimicrobial Activity and DFT Studies on 4-Methyl-N-(4-methylphenylsulfonyl)-N-phenylbenzenesulfonamide. Optics and Spectroscopy 125(1): 14-21
Junaid, M.; Jacob, J.; Nadeem, M.; Khan, M.A.; Hayat, S.; Manzoor, A.; Ahmad, S.; Musaddiq, S.; Abbas, W.; Ali, A.; Mahmood, K.; Hussain, S. 2020: Structural, Spectroscopic, Dielectric, and Magnetic Properties of Cu-Co–Co-substituted Manganese Soft Ferrites. Journal of Superconductivity and Novel Magnetism 33(10): 3171-3177
Yadav, A. 2018: Structural, Spectroscopic, Electrical and Humidity Sensing Investigations on Nanostructured Zinc Oxide (Zn O) Synthesized via Sol–Gel Method. Advanced Science, Engineering and Medicine 10(7): 665-669
Kotwica, K.; Bujak, P.; Wamil, D.; Pieczonka, A.; Wiosna-Salyga, G.; Gunka, P.A.; Jaroch, T.; Nowakowski, R.; Luszczynska, B.; Witkowska, E.; Glowacki, I.; Ulanski, J.; Zagorska, M.; Pron, A. 2015: Structural, Spectroscopic, Electrochemical, and Electroluminescent Properties of Tetraalkoxydinaphthophenazines: new Solution-Processable Nonlinear Azaacenes. The Journal of Physical Chemistry C 119(19): 10700-10708
Ünal, A.; Okur, M.; Atalay, Y. 2020: Structural, Spectroscopic, Electronic Analysis with Nonlinear Optical Activity of L-Methionine L-Methioninium Hydrogen Maleate: a DFT Study. Optics and Spectroscopy 128(5): 582-589
Gil de Muro, I.; Insausti, M.; Lezama, L.; Pizarro, J.L.; Arriortua, M.I.; Rojo, T. 1999: Structural, Spectroscopic, Magnetic and Thermal Properties in the [Sr M(C3H2O4)2(H2O)5]· 2 H2O (M = Mn, Fe, Co, Ni) System: Precursors of Sr MO3–x Mixed Oxides. European Journal of Inorganic Chemistry 6: 935-943
Manickam, R.; Srinivasan, G. 2019: Structural, Spectroscopic, Optical and Thermal Study of Bisthiourea Doped Disodium Hydrogen Phosphate Single Crystals. Materials Today: Proceedings 8: 57-61
Koch, W.O.; Schünemann, V.; Gerdan, M.; Trautwein, A.X.; Krüger, H. 1998: Structural, Spectroscopic, and Chemical Properties of the first Low-Spin Iron(III) Semiquinonate Complexes in the Solid State and in Solution. Chemistry - A European Journal 4(7): 1255-1265
Salzillo, T.; d'Agostino, S.; Rivalta, A.; Giunchi, A.; Brillante, A.; Della Valle, R.G.; Bedoya-Martínez, N.; Zojer, E.; Grepioni, F.; Venuti, E. 2018: Structural, Spectroscopic, and Computational Characterization of the Concomitant Polymorphs of the Natural Semiconductor Indigo. The Journal of Physical Chemistry C 122(32): 18422-18431
Capsoni, D.; Bini, M.; Ferrari, S.; Mustarelli, P.; Massarotti, V.; Mozzati, M.C.; Spinella, A. 2010: Structural, Spectroscopic, and Electrical Features of Undoped and Mn-Doped Li Ti2(PO4)3. The Journal of Physical Chemistry C 114(32): 13872-13878
Li, L.; Totir, D.A.; Vinokur, N.; Miller, B.; Chottiner, G.; Evans, E.A.; Angus, J.C.; Scherson, D.A. 1998: Structural, Spectroscopic, and Electrochemical Characterization of Boron‐Doped Diamond Films from Different Provenances. Journal of The Electrochemical Society 145(5): L85-L88
LeSuer, R.; Basta, R.; Arif, A.M.; Geiger, W.E.; Ernst, R.D. 2003: Structural, Spectroscopic, and Electrochemical Studies of Edge-Bridged Open Ferrocenes. Organometallics 22(7): 1487-1493
Atuchin, V.V.; Isaenko, L.I.; Kesler, V.G.; Kang, L.; Lin, Z.; Molokeev, M.S.; Yelisseyev, A.P.; Zhurkov, S.A. 2013: Structural, Spectroscopic, and Electronic Properties of Cubic G0-Rb2KTi OF5 Oxyfluoride. The Journal of Physical Chemistry C 117(14): 7269-7278
Spano, T.L.; Niedziela, J.L.; Shields, A.E.; McFarlane, J.; Zirakparvar, A.; Brubaker, Z.; Kapsimalis, R.J.; Miskowiec, A. 2020: Structural, Spectroscopic, and Kinetic Insight into the Heating Rate Dependence of Studtite and Metastudtite Dehydration. The Journal of Physical Chemistry C 124(49): 26699-26713
Pop, L.; Culea, E.; Bosca, M.; Pascuta, P. 2016: Structural, Spectroscopic, and Magnetic Characterization of Cobalt(III) Oxide–Disodium Tetraborate Glasses. Analytical Letters 49(16): 2587-2596
Callejo, L.M.; de la Pinta, N.; Madariaga, G.; Fidalgo, L.; Lezama, L.; Cortés, R. 2010: Structural, Spectroscopic, and Magnetic Characterization of the Coordination Polymers [MII(NCS)2(bpe)2]·3H2O·2C2H6SO [M = Co, Ni; bpe = 1,2-Bis(4-pyridyl)ethylene]. two Interpenetrated Porous Networks. Crystal Growth-Design 10(11): 4874-4882
Baitalik, S.; Dutta, S.; Biswas, P.; Flörke, U.; Bothe, E.; Nag, K. 2010: Structural, Spectroscopic, and Proton‐Coupled Electron‐transfer Behavior of Pyrazolyl‐3,5‐bis(benzimidazole)‐Bridged Homo‐ and Heterochiral Ru Ii Ru Ii , Os Ii Os Ii , and Os Ii Ru Ii 2,2′‐Bipyridine Complexes. European Journal of Inorganic Chemistry 4: 570-588
Makowska‐Grzyska, M.M.; Doyle, K.; Allred, R.A.; Arif, A.M.; Bebout, D.C.; Berreau, L.M. 2005: Structural, Spectroscopic, and Reactivity Properties of N 2 S 2 (thioether)‐O(amide)‐Ligated Hg Ii Complexes: the first Examples of Hg Ii ‐Mediated Amide Cleavage. European Journal of Inorganic Chemistry 5: 822-827
Mahapatra, S.; Halfen, J.A.; Wilkinson, E.C.; Pan, G.; Wang, X.; Young, V.G.; Cramer, C.J.; Que,, L.; Tolman, W.B. 1996: Structural, Spectroscopic, and Theoretical Characterization of Bis(μ-oxo)dicopper Complexes, Novel Intermediates in Copper-Mediated Dioxygen Activation. Journal of the American Chemical Society 118(46): 11555-11574
Lapić, J.; Pavlović, G.; Siebler, D.; Heinze, K.; Rapić, V. 2008: Structural, Spectroscopic, and Theoretical Study of Ferrocene Ureidopeptides. Organometallics 27(4): 726-735
Kirsch, A.; Murshed, M.M.; Litterst, F.J.; Gesing, T.M. 2019: Structural, Spectroscopic, and Thermoanalytic Studies on Bi2Fe4O9: Tunable Properties Driven by Nano- and Poly-crystalline States. The Journal of Physical Chemistry C 123(5): 3161-3171
Hymavathi, B.; Kumar, B.R.; Rao, T.S. 2015: Structural, Surface Morphological and Optical Properties of Cr Doped Cd O Thin Films for Optoelectronic Devices. Materials Today: Proceedings 2(4-5): 1510-1517
Pandiarajan, J.; Jeyakumaran, N.; Prithivikumaran, N. 2012: Structural, Surface Morphological and Photoluminescence Properties of Nanostructured Porous Silicon Material for Optoelectronics Application. Advanced Materials Research 584: 290-294
Deraz, N.; Alarifi, A. 2009: Structural, Surface and Catalytic Properties of Nano-Sized Ceria Catalysts. Adsorption Science-Technology 27(4): 413-422
Antony, R.; David, S.T.; Karuppasamy, K.; Saravanan, K.; Thanikaikarasan, S.; Balakumar, S. 2012: Structural, Surface, Thermal and Catalytic Properties of Chitosan Supported Cu(II) Mixed Ligand Complex Materials. Journal of Surface Engineered Materials and Advanced Technology 02(04): 284-291
Yu, C.C.; Ramanathan, S.; Sherif, F.; Oyama, S.T. 1994: Structural, Surface, and Catalytic Properties of a new Bimetallic V-Mo Oxynitride Catalyst for Hydrodenitrogenation. The Journal of Physical Chemistry 98(49): 13038-13041
Azam, M.; Khan, A.; Muzzafar, D.; Faryal, R.; Siddiqi, S.; Ahmad, R.; Chauhdry, A.; Rehman, I. 2015: Structural, Surface, in vitro Bacterial Adhesion and Biofilm Formation Analysis of Three Dental Restorative Composites. Materials 8(6): 3221-3237
Flanigen, E.M.; Patton, R.L.; Wilson, S.T. 1988: Structural, Synthetic and Physicochemical Concepts in Aluminophosphate-Based Molecular Sieves. Studies in Surface Science and Catalysis: 13-27
Khaleel, A.; Al-Zuhair, S.; Al-Mamary, S.; Parvin, M.; Khan, A.H. 2017: Structural, Textural, and Catalytic Properties of Ti(IV)-Fe(III) Mixed Oxides Prepared by a Modified Sol-Gel Route. ChemistrySelect 2(2): 791-799
Mlahi, M.R.; Mostafa, M.M. 2021: Structural, Theoretical and Biological Studies of (Z)-3-Amino-N-(3-Amino Pyrazine-2-Carbonyl) Pyrazine-2-Carbohydrazonic Acid (APA; L) and its Cu2+, Co2+, Pt4+ and Pd2+ Chelates. Open Journal of Inorganic Chemistry 10(04): 145-175
Sabounchei, S.J.; Sarlakifar, M.; Pourshahbaz, M.; Salehzadeh, S.; Bayat, M.; Khavasi, H.R.; Akhlaghi Bagherjeri, F.; Boscovic, C. 2012: Structural, Theoretical and Multinuclear NMR Study of a new Polymeric Mercury(II) Complex with an Ambidentate Phosphorus Ylide. Journal of Inorganic and Organometallic Polymers and Materials 23(2): 401-408
Cinellu, M.A.; Arca, M.; Ortu, F.; Stoccoro, S.; Zucca, A.; Pintus, A.; Maiore, L. 2019: Structural, Theoretical and Spectroscopic Characterisation of a Series of Novel Gold(I)‐Norbornene Complexes Supported by Phenanthrolines: Effects of the Supporting Ligand. European Journal of Inorganic Chemistry 44: 4784-4795
Algarni, H.; Alshahrani, I.; Ibrahim, E.H.; Eid, R.A.; Kilany, M.; Ghramh, H.A.; Sayed, M.A.; Reben, M.; Yousef, E.S. 2019: Structural, Thermal Stability and in Vivo Bioactivity Properties of Nanobioglasses Containing Zn O. Science of Advanced Materials 11(7): 925-935
Noréus, D.; Jansson, K.; Nygren, M. 1985: Structural, Thermal and Electrical Properties Indicating Covalent Bonding in Mg2Ni H4. Zeitschrift für Physikalische Chemie 146(2): 191-199
Thakur, S.; Pandey, O.P.; Singh, K. 2013: Structural, Thermal and Electrical Study of Ca2+, Sr2+ Substituted Bi Fe O3 for IT-SOFC. ECS Transactions 57(1): 2125-2132
Wang, G.; Kothari, D.; Reddy, V.R.; Gupta, A. 2013: Structural, Thermal and Electrical Study of Multiferroic Bi Fe O3 Ceramic with Al3+ and Ba2+ Co-substitution. Physics Procedia 49: 199-204
Reddy, P.; Raja, Y.; Ashok, M. 2014: Structural, Thermal and Magnetic Analysis of Co2Fe O4 Spinel Oxide Synthesized by Co-Precipitation Process. Advanced Materials Research 895: 287-290
Madhava Kumar, Y.; Bhagyasree, K.; Gopal, N.; Ramu, C.; Nagabhushana, H. 2016: Structural, Thermal and Optical Properties of Mn2+ Doped Methacrylic Acid – Ethyl Acrylate (MAA:EA) Copolymer Films. Zeitschrift für Physikalische Chemie 231(5): 1039-1055
Pandiyarajan, T.; Karthikeyan, B. 2013: Structural, Thermal and Optical Properties of PVP Capped Zn O Films. Advanced Materials Research 678: 253-257
Ahmad Banday, J.; Ahmad Mir, F.; Farooq, S.; Ahmad Qurishi, M.; Koul, S.; Kishen Razdan, T. 2012: Structural, Thermal and Optical Studies of Oxypeucedanin Hydrate Monoacetate Micro-Crystals from Prangos pabularia. American Journal of Analytical Chemistry 03(03): 204-209
Kaushik, R.K.; Batra, U.; Sharma, J.D. 2020: Structural, Thermal and Wetting Characteristics of Novel Low Bi-Low Ag Containing Sn–x.Ag–0.7Cu–1.0Bi (x = 0.5 to 1.5) Alloys for Electronic Application. Metals and Materials International 27(11): 4550-4563
Przewoźnik, J.; Chmist, J.; Kolwicz-Chodak, L.; Tarnawski, Z.; Kołodziejczyk, A.; Krop, K.; Kellner, K.; Gritzner, G. 2004: Structural, Thermal, Magnetic, and Transport Properties of (La2/3Ca1/3)(Mn1-x Snx)O3-δCompounds. Acta Physica Polonica A 106(5): 665-680
Rather, S.; Ahmad Al-Zahrani, A.; Saeed, U.; Lemine, O.M.; Al-Shahrani, S.S.A.; Mahmood Ali, A.; Alam, M.M. 2021: Structural, Thermal, Morphological and Magnetic Properties of Al3+-Doped Nanostructured Spinel Nickel Ferrites. Science of Advanced Materials 13(5): 794-802
Chen, Y. 2015: Structural, Thermal, Optical, Electrical, and Adhesive Characteristics of Fe Pd B Thin Films. Journal of Nanomaterials 2015: 1-5
Ahad, N.; Saion, E.; Gharibshahi, E. 2012: Structural, Thermal, and Electrical Properties of PVA-Sodium Salicylate Solid Composite Polymer Electrolyte. Journal of Nanomaterials 2012: 1-8
Muthiah, A.; Baikie, T.; Ulaganathan, M.; Copley, M.; Yang, G.; Aravindan, V.; Srinivasan, M. 2017: Structural, Thermal, and Electrochemical Studies of Novel Li2Cox Mn1–x(SO4)2 Bimetallic Sulfates. The Journal of Physical Chemistry C 121(45): 24971-24978
Li, Y.; Fan, Y.; Zhang, H.; Teng, X.; Dong, X.; Liu, H.; Ge, X.; Li, Q.; Chen, W.; Li, X.; Ge, Z. 2013: Structural, Thermal, and Magnetic Properties of Cu-doped Bi Fe O3. Journal of Superconductivity and Novel Magnetism 27(5): 1239-1243
Sankar, C.R.; Guch, M.; Assoud, A.; Kleinke, H. 2011: Structural, Thermal, and Physical Properties of the Thallium Zirconium Telluride Tl2Zr Te3. Chemistry of Materials 23(17): 3886-3891
Makowski, T.; Moustafa, R.M.; Uznanski, P.; Zajaczkowski, W.; Pisula, W.; Tracz, A.; Kaafarani, B.R. 2014: Structural, Thermo-Optical, and Photophysical Properties of Highly Oriented Thin Films of Quinoxalinophenanthrophenazine Derivative. The Journal of Physical Chemistry C 118(32): 18736-18745
Leirmo, S.; Record Jr., M.T. 1990: Structural, Thermodynamic and Kinetic Studies of the Interaction of Eσ70 RNA Polymerase with Promoter DNA. Nucleic Acids and Molecular Biology: 123-151
Bhuiyan, G.M.; Rahman, A.; Khaleque, M.A.; Rashid, R.I.M.A.; Mujibur Rahman, S.M. 2000: Structural, Thermodynamic and Transport Troperties of Liquid Noble and Transition Metals. Physics and Chemistry of Liquids 38(1): 1-16
Suitchmezian, V.; Jess, I.; Sehnert, J.; Seyfarth, L.; Senker, J.; Näther, C. 2008: Structural, Thermodynamic, and Kinetic Aspects of the Polymorphism and Pseudopolymorphism of Prednisolone (11,17α,21-Trihydroxy-1,4-pregnadien-3,20-dion). Crystal Growth-Design 8(1): 98-107
Fang, T.; Wang, L.; Qi, Y. 2013: Structural, Thermodynamics and Dynamics Properties of Fe-Ni Melts with Different EAM Models. Advanced Materials Research 750-752: 579-582
Kumar, V.; Singh, R.; Purohit, L.; Mehra, R. 2011: Structural, Transport and Optical Properties of Boron-doped Zinc Oxide Nanocrystalline. Journal of Materials Science-Technology 27(6): 481-488
Lee, H.K.; Lee, M.S.; Kim, Y.I. 2013: Structural, Transport, and Magnetic Properties of (Ru0.9Nb0.1)Sr2(Gd0.67R0.67Ce0.66)Cu2O z (R = Nd, Gd, and Tb). Journal of Superconductivity and Novel Magnetism 27(2): 505-510
Padmavathi, M.; Singh, R. 2014: Structural, Transport, and Magnetic Properties of Bismuth Oxysulfide Superconductors. Journal of Superconductivity and Novel Magnetism 28(5): 1461-1469
Rammah, Y.; Abouhaswa, A.; Sayyed, M.; Tekin, H.; El-Mallawany, R. 2019: Structural, UV and shielding properties of ZBPC glasses. Journal of Non-Crystalline Solids 509: 99-105
H. Nandyala, S.; Pires;Rui L. Reis, R.; Hungerford, G.; L. Rao, J.; B. Leonor, I. 2016: Structural, UV-VIS-NIR Luminescence and Decay Associated Spectral Profiles of Sm3+ Doped Calcium Phosphate Glass. Advanced Materials Letters 7(9): 702-707
Sarantis, N.; Stewart, C. 1995: Structural, VAR and BVAR models of exchange rate determination: a comparison of their forecasting performance. Journal of Forecasting 14(3): 201-215
Y. Pandya, N.; D. Mevada, A.; N. Gajjar, P. 2016: Structural, Vibrational and Electronic properties of Fe Ni. Materials Today: Proceedings 3(9): 3012-3017
Jeyakumaran, T.; Venkatesh Bharathi, N.; Shanmugavel, R.; Sriramachandran, P.; Ramaswamy, S. 2020: Structural, Vibrational, Optical and Improved Photoluminescence Properties of Dy3+ Doped Ca2KZn2V3O12 Phosphors. Journal of Inorganic and Organometallic Polymers and Materials 31(2): 695-703
Eisler, S.; McDonald, R.; Loppnow, G.R.; Tykwinski, R.R. 2000: Structural, Vibrational, and Electronic Characteristics of Enyne Macrocycles as a Function of Ring Strain. Journal of the American Chemical Society 122(29): 6917-6928
Costa, R.A.; Pinheiro, M.L.B.; Oliveira, K.M.T.d.; Barison, A.; Salomé, K.S.; Iank, J.R.; da Silva, N.G.; Cabral, T.S.; Costa, E.V. 2016: Structural, Vibrational, and Electronic Properties of the Glucoalkaloid Strictosidine: a Combined Experimental and Theoretical Study. Journal of Chemistry 2016: 1-16
Cuenca-Gotor, V.P.; Sans, J.A.; Ibáñez, J.; Popescu, C.; Gomis, O.; Vilaplana, R.; Manjón, F.J.; Leonardo, A.; Sagasta, E.; Suárez-Alcubilla, A.; Gurtubay, I.G.; Mollar, M.; Bergara, A. 2016: Structural, Vibrational, and Electronic Study of α-As2Te3 under Compression. The Journal of Physical Chemistry C 120(34): 19340-19352
Torres, M.B.; Aguado, A.; Aguilera-Granja, F.; Vega, A.; Balbás, L.C. 2015: Structural, Vibrational, and Magnetic Properties of Fe Co On0/+ (n = 1–6) Bimetallic Oxide Clusters. The Journal of Physical Chemistry C 119(20): 11200-11209
Bouazizi, S.; Makni-Chakroun, J.; Ayadi, F.; Cheikhrouhou-Koubaa, W.; Koubaa, M.; Nachbaur, V.; Cheikhrouhou, A. 2018: Structural, Vibrational, and Magnetic Properties of Mo S2/Cr2O3 Composites Synthesized by the Solid-State Technique. Journal of Superconductivity and Novel Magnetism 32(3): 627-634
Hahn, K.R.; Melis, C.; Colombo, L. 2016: Structural, Vibrational, and Thermal Properties of Nanocrystalline Graphene in Atomistic Simulations. The Journal of Physical Chemistry C 120(5): 3026-3035
De la Rosa, G.A.; Zheng, L.C.; Vedad, J.; Desamero, R.Z.B. 2018: Structural, Vibrational, and p K a Determination of Carboxylic Acids Using DFT Calculations and Raman Spectroscopy: An Instrumental Analysis Laboratory. Raman Spectroscopy in the Undergraduate Curriculum: 93-114
Rawal, S. K.; Chawla, A.K.; Jayaganthan, R.; Chandra, R. 2012: Structural, Wettability and Optical Investigation of Titanium Oxynitride Coatings: Effect of Various Sputtering Parameters. Journal of Materials Science-Technology 28(6): 512-523
Bhuvaneswari, M.; Selvasekarapandian, S.; Fujihara, S.; Koji, S. 2006: Structural, XPS and impedance analysis of Lix Co VO4 (x=0.8, 1.0, 1.2). Solid State Ionics 177(1-2): 121-127
Kumar, S.; Prakash, R.; Choudhary, R.; Phase, D. 2015: Structural, XPS and magnetic studies of pulsed laser deposited Fe doped Eu2O3 thin film. Materials Research Bulletin 70: 392-396
Rani, P.R.; Venkateswarlu, M.; Mahamuda, S.; Swapna, K.; Deopa, N.; Rao, A.; Prakash, G.V. 2019: Structural, absorption and photoluminescence studies of Sm3+ ions doped barium lead alumino fluoro borate glasses for optoelectronic device applications. Materials Research Bulletin 110: 159-168
Özkınalı, S.; Çavuş, M.S.; Ceylan, A.; Gür, M. 2017: Structural, absorption, and molecular properties of o,o'-dihydroxyazo resorcinol dyes bearing an acryloyloxy group. Journal of Molecular Structure 1149: 206-215
Ammar, A.; Farid, A.; Farag, A.; Sharshar, K.; Abu-Samaha, F.; Hamad, K. 2015: Structural, absorption, dispersion and photo-induced characteristics of thermally vacuum-evaporated Bi Sb Se3 thin films. Journal of Non-Crystalline Solids 416: 50-57
Sun, Q.; Fu, Y.; Liu, J.; Auroux, A.; Shen, J. 2008: Structural, acidic and redox properties of V2O5-Ti O2-SO42− catalysts. Applied Catalysis A: General 334(1-2): 26-34
Sun, Q.; Fang, D.; Wang, S.; Shen, J.; Auroux, A. 2007: Structural, acidic and redox properties of V2O5/Nb P catalysts. Applied Catalysis A: General 327(2): 218-225
Jia, G.; Lau, C. 1999: Structural, acidity and chemical properties of some dihydrogen/hydride complexes of Group 8 metals with cyclopentadienyls and related ligands. Coordination Chemistry Reviews 190-192: 83-108
Xing, M.; Li, B.; Yu, Z.; Chen, Q. 2016: Structural, anisotropic and thermodynamic properties of Imm2-BCN. Journal of Wuhan University of Technology-Mater. Sci. Ed. 31(6): 1272-1279
Hu, W.; Liu, Y.; Li, D.; Jin, H.; Xu, Y.; Xu, C.; Zeng, X. 2015: Structural, anisotropic elastic and electronic properties of Sr–Zn binary system intermetallic compounds: a first-principles study. Computational Materials Science 99: 381-389
Huang, B.; Duan, Y.; Hu, W.; Sun, Y.; Chen, S. 2015: Structural, anisotropic elastic and thermal properties of MB (M=Ti, Zr and Hf) monoborides. Ceramics International 41(5): 6831-6843
Nouri, K.; Jemmali, M.; S.Walha; Zehani, K.; Ben Salah, A.; Bessais, L. 2016: Structural, atomic Hirschfeld surface, magnetic and magnetocaloric properties of Sm Ni5 compound. Journal of Alloys and Compounds 672: 440-448
Chittari, B.L.; Tewari, S.P. 2014: Structural, bonding and elastic properties of Mg(NH2BH3)2, Ca(NH2BH3)2 and Sr(NH2BH3)2. Materials Chemistry and Physics 148(1-2): 364-370
Heaton, B.T. 1988: Structural, bonding and mechanistic rearrangement information on transition metal carbonyl clusters from multinuclear magnetic resonance studies. Pure and Applied Chemistry 60(12): 1757-1761
Nemdili, H.; Zouchoune, B.; Saber Zendaoui, M.; Ferhati, A. 2019: Structural, bonding and redox properties of 34-electron bimetallic complexes and their oxidized 32- and 33-electron and reduced 35- and 36-electron derivatives containing the indenyl fused π-system: a DFT overview. Polyhedron 160: 219-228
Nakazawa, T.; Kaji, Y. 2012: Structural, bonding, and magnetic properties of small Fen–x Mox (n, x≤6) clusters. Computational Materials Science 55: 365-375
Colorado, H.D.; Hernandez, J.S.T.; Alcázar, G.A.P.; Bolaños, A. 2013: Structural, calorimetric and magnetic properties study of the Cu0,91Fe0,09O system. Hyperfine Interactions 224(1-3): 171-178
Erdogdu, Y.; Drozd, M.; Marchewka, M. 2012: Structural, calorimetric and vibrational investigations of 2, 3 and 4-hydroxyanilinium perchlorate: a theoretical and experimental study. Vibrational Spectroscopy 58: 169-180
Hornés, A.; Munuera, G.; Fuerte, A.; Escudero, M.; Daza, L.; Martínez-Arias, A. 2011: Structural, catalytic/redox and electrical characterization of systems combining Cu–Fe with Ce O2 or Ce1−x Mx O2−δ (M=Gd or Tb) for direct methane oxidation. Journal of Power Sources 196(9): 4218-4225
Hornés, A.; Gamarra, D.; Munuera, G.; Fuerte, A.; Valenzuela, R.; Escudero, M.; Daza, L.; Conesa, J.; Bera, P.; Martínez-Arias, A. 2009: Structural, catalytic/redox and electrical characterization of systems combining Cu–Ni with Ce O2 or Ce1−x Mx O2−δ (M=Gd or Tb) for direct methane oxidation. Journal of Power Sources 192(1): 70-77
Chékir-Mzali, J.; Horchani-Naifer, K.; Férid, M. 2016: Structural, characterization and spectroscopic properties of NH4Yb P2O7 micro-powders. Optik 127(14): 5622-5630
Kalaivani, S.; Ponnilavan, V.; Kumar, P.N.; Kannan, S. 2019: Structural, charge density and bond length variations in c-Y2O3 influenced by progressive cerium additions. CrystEngComm 21(35): 5332-5343
Brennan, B.; Spencer, S.J.; Belsey, N.A.; Faris, T.; Cronin, H.; Silva, S.R.P.; Sainsbury, T.; Gilmore, I.S.; Stoeva, Z.; Pollard, A.J. 2017: Structural, chemical and electrical characterisation of conductive graphene-polymer composite films. Applied Surface Science 403: 403-412
Souza, E.; Lourenco, A.; Gorenstein, A. 2007: Structural, chemical and electrochemical analyses of Cux V2O5 bronzes thin films. Solid State Ionics 178(5-6): 381-385
Kuhn, W.K.; Campbell, R.A.; Goodman, D.W. 1993: Structural, chemical and electronic properties of copper/tantalum (110). The Journal of Physical Chemistry 97(2): 446-453
Wierzbowski, H.; Szaniawski, H.; Błażejowski, B. 2020: Structural, chemical and isotope evidence for secondary phosphate mineralization of grasping spines of Early Palaeozoic chaetognaths. Lethaia 54(2): 245-259
Vangelista, S.; Piagge, R.; Ek, S.; Sarnet, T.; Ghidini, G.; Martella, C.; Lamperti, A. 2017: Structural, chemical and optical properties of cerium dioxide film prepared by atomic layer deposition on Ti N and Si substrates. Thin Solid Films 636: 78-84
Ancutiene, I.; Navea, J.G.; Baltrusaitis, J. 2015: Structural, chemical and optical properties of the polyethylene–copper sulfide composite thin films synthesized using polythionic acid as sulfur source. Applied Surface Science 347: 520-527
de Souza, G.B.; Foerster, C.E.; Lepienski, C.M.; Kuromoto, N.K.; Silva, S.L.d.; Schreiner, W.H. 2010: Structural, chemical and tribo-mechanical surface features of Ti and nitrided Ti submitted to hydrogen low energy implantation. Materials Chemistry and Physics 124(1): 443-452
Vázquez, M.; Heredia-Guerrero, J.; Galán, P.; Benitez, J.; Benavente, J. 2011: Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose γ-radiation. Materials Chemistry and Physics 126(3): 734-740
Kang, J.; Jung, Y.C.; Seong, S.; Lee, T.; Ahn, J.; Noh, W.; Park, I. 2017: Structural, chemical, and electrical properties of y 2 O 3 thin films grown by atomic layer deposition with an (i Pr Cp) 2 Y(i Pr-amd) precursor. Materials Science in Semiconductor Processing 63: 279-284
Haag, J.M.; Bierschenk, D.M.; Barnett, S.A.; Poeppelmeier, K.R. 2012: Structural, chemical, and electrochemical characteristics of la Sr2Fe2Cr O9-δ-based solid oxide fuel cell anodes. Solid State Ionics 212: 1-5
Kahlaoui, M.; Inoubli, A.; Chefi, S.; Mezni, A.; Kouki, A.; Madani, A.; Chefi, C. 2016: Structural, chemical, and electrochemical properties of co-doped fluorite oxides Ce0.8La0.2−x Tlx O2−δ as electrolyte materials for solid oxide fuel cells. International Journal of Hydrogen Energy 41(8): 4751-4764
Hoffmann, R.D.; Jeitschko, W.; Boonk, L. 1989: Structural, chemical, and physical properties of rare-earth metal rhodium carbides Ln Rh C2 (Ln = La, Ce, Pr, Nd, Sm). Chemistry of Materials 1(6): 580-586
Enyashin, A.; Ivanovskii, A. 2009: Structural, cohesive and electronic properties of titanium oxycarbides (Ti Cx O1−x) nanowires and nanotubes: DFT modeling. Chemical Physics 362(1-2): 58-64
Soltani, M. 2007: Structural, compositional and annealing effects on magnetic properties in R1−x Cox(R=Er, Tb, Sm) amorphous thin film alloys. Journal of Non-Crystalline Solids 353(18-21): 2074-2078
Herrera, R.; Curiel, M.; Arias, A.; Nesheva, D.; Nedev, N.; Manolov, E.; Dzhurkov, V.; Perez, O.; Valdez, B.; Mateos, D.; Bineva, I.; de la Cruz, W.; Contreras, O. 2015: Structural, compositional and electrical characterization of Si-rich Si Ox layers suitable for application in light sensors. Materials Science in Semiconductor Processing 37: 229-234
Sakamoto, T.; Famengo, A.; Barison, S.; Battiston, S.; Boldrini, S.; Ferrario, A.; Fiameni, S.; Iida, T.; Takanashi, Y.; Fabrizio, M. 2016: Structural, compositional and functional properties of Sb-doped Mg2Si synthesized in Al2O3-crucibles. RSC Advances 6(84): 81037-81045
Umar, Z.A.; Rawat, R.S.; Ahmad, R.; Chen, Z.; Zhang, Z.; Siddiqui, J.; Hussnain, A.; Hussain, T.; Baig, M.A. 2016: Structural, compositional and hardness properties of hydrogenated amorphous carbon nitride thin films synthesized by dense plasma focus device. Surface and Interface Analysis 49(6): 548-553
Thanikaikarasan, S.; Perumal, R.; Vijayan, V.; Venkatamuthukumar, J. 2020: Structural, compositional and optical properties of electrochemically grown iron diselenide thin films. Materials Today: Proceedings 21: 483-487
Kokate, A.; Suryavanshi, U.; Bhosale, C. 2006: Structural, compositional, and optical properties of electrochemically deposited stoichiometric Cd Se thin films from non-aqueous bath. Solar Energy 80(2): 156-160
Johnson, J.W. 2009: Structural, compositional, and process controls on the dynamic mass partitioning and spatial distribution of CO2 trapping mechanisms: Influence on isolation performance. Energy Procedia 1(1): 3499-3506
Shanmugavadivu, T.; Balachandar, S.; Muthuraja, P.; Dhandapani, M. 2018: Structural, computational and Hirshfeld surface analysis of a proton transfer crystal, amino (2-(propan-2-ylidene) hydrazinyl) methaniminium picrate. Journal of Molecular Structure 1171: 793-807
Kose, M.; Hepokur, C.; Karakas, D.; McKee, V.; Kurtoglu, M. 2016: Structural, computational and cytotoxic studies of square planar copper(II) complexes derived from dicyandiamide. Polyhedron 117: 652-660
Obasi, L.N.; Ezeorah, J.C.; Ossai, V.; Jude, A.; Oruma, U.S.; Ibezim, A.; Lutter, M.; Rhyman, L.; Jurkschat, K.; Dege, N.; Ramasami, P. 2019: Structural, computational and in silico studies of Schiff bases derived from 2,3-dihydroxybenzaldehyde and molecular structure of their zwitterionic forms. Journal of Molecular Structure 1188: 69-75
Litaiem, H.; Dammak, M.; Mhiri, T.; Cousson, A. 2005: Structural, conductivity and dielectric studies in (NH4)2Se O4·Te(OH)6. Journal of Alloys and Compounds 396(1-2): 34-39
Ferraro, J.R. 1982: Structural, conductivity and spectroscopic aspects of one-dimensional transition metal complexes. Coordination Chemistry Reviews 43: 205-232
Iriepa, I.; Gil-Alberdi, B.; Gálvez, E.; Herranz, M.; Bellanato, J.; Carmona, P.; Orjales, A.; Berisa, A.; Labeaga, L. 1999: Structural, conformational and pharmacological study of some amides derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9β-amine as potential analgesics. Journal of Molecular Structure 482-483: 425-430
Iriepa, I.; Gil-Alberdi, B.; Gálvez, E.; Sanz-Aparicio, J.; Fonseca, I.; Orjales, A.; Berisa, A.; Labeaga, C. 1995: Structural, conformational and pharmacological study of some esters derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9β-ol. Journal of Molecular Structure 351: 119-125
Fernández, M.; Huertas, R.; Gálvez, E.; Orjales, A.; Berisa, A.; Labeaga, L.; Garcia, A.; Uceda, G.; Server-Carrió, J.; Martinez-Ripoll, M. 1995: Structural, conformational, biochemical, and pharmacological study of some amides derived from 3,7-dimethyl-3,7-diazabicyclo [3.3.1] nonan-9-amine as potential 5-HT3 receptor antagonists. Journal of Molecular Structure 372(2-3): 203-213
Fernández, M.; Huertas, R.; Gálvez, E.; Orjales, A.; Berisa, A.; Labeaga, L.; Garcia, A.; Uceda, G.; Server-Carrió, J.; Martinez-Ripoli, M. 1995: Structural, conformational, biochemical, and pharmacological study of some amides derived from 3,7-dimethyl-3,7-diazabicyclo [3.3.1] nonan-9-amine as potential 5-HT3 receptor antagonists. Journal of Molecular Structure: THEOCHEM 372(2-3): 203-213
Fernández, M.; Toledano, M.; Gálvez, E.; Orjales, A.; Berisa, A.; Labeaga, L.; Fonseca, I.; Sanz-Aparicio, J.; Bellanato, J. 1995: Structural, conformational, theoretical and pharmacological study of some amides derived from 3,7-dimethyl-9-[(N-substituted)-4-chlorobenzamido]3,7-diazabicyclo[3.3.1]nonane-9-carboxamide. Journal of Molecular Structure 351: 137-146
Jabile, L.M.; Vequizo, R.M.; Unabia, R.B.; Lincuna, J.R.S.; Odarve-Vequizo, M.K.G.; Miñoza, S.R. 2018: Structural, crystallographic and morphological properties of microwave-assisted growth of nano-apatite powders. Materials Today: Proceedings 5(7): 14824-14829
Bhat, M.; Poojary, B.; Kumar, S.M.; Hussain, M.M.; Pai, N.; Revanasiddappa, B.; Kullaiah, B. 2018: Structural, crystallographic, Hirshfeld surface, thermal and antimicrobial evaluation of new sulfonyl hydrazones. Journal of Molecular Structure 1159: 55-66
Guha, S.; Yang, J.; Williamson, D.L.; Lubianiker, Y.; Cohen, J.D.; Mahan, A.H. 1999: Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity. Applied Physics Letters 74(13): 1860-1862
Kuganathan, N.; Chroneos, A. 2020: Structural, defect, transport and dopant properties of Ag Nb O 3. ChemNanoMat 6(9): 1337-1345
Abdul Wahab, F.F.; Shamsuddin, M.; Ku Bulat, K.H.; Ismail, N. 2018: Structural, density functional computational studies and antibacterial screening on N,N′-bis-(4-hydroxy-α-methylsalicylidene)ethylenediamine nickel (II) complex. Polyhedron 156: 165-173
Pattipaka, S.; Peddigari, M.; Pamu, D. 2017: Structural, dielectric and AC-conductivity studies of Gd doped lead-free Bi0.5Na0.5Ti O3 ceramics. Ferroelectrics 518(1): 59-65
Raevski, I.P.; Pushkarev, A.V.; Raevskaya, S.I.; Olekhnovich, N.M.; Radyush, Y.V.; Kubrin, S.P.; Chen, H.; Chou, C.; Sarychev, D.A.; Titov, V.V.; Malitskaya, M.A. 2016: Structural, dielectric and Mossbauer studies of Pb Fe0.5Sb0.5O3ceramics with differing degree of compositional ordering. Ferroelectrics 501(1): 154-164
Shukla, R.K.; Raina, K.K. 2017: Structural, dielectric and conductivity behaviours of cetyltrimethylammonium bromide/ethylene glycol-based quenched lyotropic mesophases. Liquid Crystals 45(3): 381-387
Rudramadevi, B.H.; Thilagavathi, K.; Buddhudu, S. 2012: Structural, dielectric and conductivity properties of Mn2+:PVP and Ni2+:PVP polymer films. Indian Journal of Physics 86(11): 997-1001
Biswal, L.; Das, P.R.; Behera, B.; Choudhury, R.N.P. 2012: Structural, dielectric and conductivity studies of Na2Pb2La2W2Ti4Nb4O30 ferroelectric ceramic. Journal of Electroceramics 29(3): 204-210
Dadami, S.T.; Matteppanavar, S.; Shivaraja, I.; Rayaprol, S.; Deshpande, S.; Murugendrappa, M.; Angadi, B. 2017: Structural, dielectric and conductivity studies of Pb Fe0.5Nb0.5O3 - Bi Fe O3 multiferroic solid solution. Journal of Alloys and Compounds 724: 787-798
Narang, S.B.; Kaur, D.; Pubby, K. 2016: Structural, dielectric and electrical analysis of Ba2−x La4 + 2x/3Ti8O24ceramics system with frequency and temperature. Microwave and Optical Technology Letters 58(7): 1679-1686
Auromun, K.; Choudhary, R. 2019: Structural, dielectric and electrical behavior of Bi0.85Tm0.15Fe O3 ceramic. Ceramics International 45(16): 20762-20773
Kar, T.; Choudhary, R. 1999: Structural, dielectric and electrical behaviour of Na Ta XO6(X=W,Mo) ceramics. Journal of Physics and Chemistry of Solids 60(5): 673-679
De, M.; Hajra, S.; Tiwari, R.; Sahoo, S.; Choudhary, R.; Tewari, H. 2018: Structural, dielectric and electrical characteristics of Bi Fe O3-Na Nb O3 solid solutions. Ceramics International 44(10): 11792-11797
Kumar, N.; Shukla, A.; Kumar, N.; Choudhary, R.N.P. 2020: Structural, dielectric and electrical characteristics of lead-free ceramic systems: Bi Fex La1−x O3 (x = 0.4 and 0.6). Journal of Electroceramics 44(3-4): 203-214
Kar, T.; Choudhary, R. 2002: Structural, dielectric and electrical conducting properties of Cs B′B′′O6 (B′=Nb, Ta; B′′=W, Mo) ceramics. Materials Science and Engineering: B90(3): 224-233
Dutta, S.; Choudhary, R.; Sinha, P. 2004: Structural, dielectric and electrical properties of Al+3-modified PLZT ceramics. Materials Letters 58(22-23): 2735-2740
Ganguly, M.; Parida, S.; Sinha, E.; Rout, S.; Simanshu, A.; Hussain, A.; Kim, I. 2011: Structural, dielectric and electrical properties of Ba Fe0.5Nb0.5O3 ceramic prepared by solid-state reaction technique. Materials Chemistry and Physics 131(1-2): 535-539
Arya, B.; Choudhary, R. 2020: Structural, dielectric and electrical properties of Ba Sn O3 and Ba Se O3 modified Bi0.5Na0.5Ti O3 ceramics. Ceramics International 46(4): 4222-4234
Chamola, A.; Singh, H.; Naithani, U.; Sharma, S.; Prabhat, U.; Devi, P.; Malik, A.; Srivastava, A.; Sharma, R. 2012: Structural, dielectric and electrical properties of Lead zirconate titanate and Ca Cu3Ti4O12 ceramic composite. Advanced Materials Letters 2(1): 26-31
Behera, B.; Nayak, P.; Choudhary, R. 2006: Structural, dielectric and electrical properties of Li Ba2X5O15 (X=Nb and Ta) ceramics. Materials Chemistry and Physics 100(1): 138-141
Behera, B.; Nayak, P.; Choudhary, R. 2005: Structural, dielectric and electrical properties of Na Ba2X5O15 (X=Nb and Ta) ceramics. Materials Letters 59(27): 3489-3493
Singh, A.; Choudhary, R. 2003: Structural, dielectric and electrical properties of Pb5−x La1+x Ti3+x Nb7−x O30 (x=0, 1 and 2) ceramics. Journal of Physics and Chemistry of Solids 64(7): 1185-1193
Rejaiba, O.; Hcini, F.; Nasri, M.; Alzahrani, B.; Bouazizi, M.L.; Hlil, E.K.; Khelifi, J.; Khirouni, K.; Dhahri, E. 2021: Structural, dielectric and electrical properties of Sol–gel auto-combustion technic of Cu Fe Cr0.5Ni0.5O4 ferrite. Journal of Materials Science 56(28): 16044-16058
Messaoud, F.B.; Rahmouni, H.; Dhahri, A.; Bouguila, N.; Dhahri, J.; Khirouni, K. 2015: Structural, dielectric and electrical properties of Zn doped Ba0.8Sr0.2Ti O3. Ceramics International 41(9): 10910-10914
Samkaria, R.; Sharma, V. 2013: Structural, dielectric and electrical studies of Mg Al2−2x Y2x O4 (x = 0.00–0.05) cubic spinel nano aluminate. Journal of Electroceramics 31(1-2): 67-74
Asbani, B.; Gagou, Y.; Dellis, J.; Lahmar, A.; Amjoud, M.; Mezzane, D.; Kutnjak, Z.; El Marssi, M. 2016: Structural, dielectric and electrocaloric properties in lead-free Zr-doped Ba0.8Ca0.2Ti O3 solid solution. Solid State Communications 237-238: 49-54
Madhu, B.; Ashwini, S.; Shruthi, B.; Divyashree, B.; Manjunath, A.; Jayanna, H. 2014: Structural, dielectric and electromagnetic shielding properties of Ni–Cu nanoferrite/PVP composites. Materials Science and Engineering: B186: 1-6
Hayden, B.E.; Yakovlev, S. 2016: Structural, dielectric and ferroelectric properties of (Bi,Na)Ti O3–Ba Ti O3 system studied by high throughput screening. Thin Solid Films 603: 108-114
Rawat, M.; Yadav, K. 2013: Structural, dielectric and ferroelectric properties of Ba1−x(Bi0.5Na0.5)x Ti O3 ceramics. Ceramics International 39(4): 3627-3633
Kumar, S.; Kumar, P.; Agrawal, D. 2012: Structural, dielectric and ferroelectric properties of SBN ceramics synthesized by microwave reactive sintering technique. Ceramics International 38(6): 5243-5250
Chitra; Singh, K.C. 2017: Structural, dielectric and ferroelectric properties of dysprosium doped (Ba0.7Ca 0.3)(Ti0.92 Sn0.08)O3 lead free ceramics. Ferroelectrics 518(1): 1-10
Kumar, S.; Varma, K. 2010: Structural, dielectric and ferroelectric properties of four-layer Aurivillius phase Na0.5La0.5Bi4Ti4O15. Materials Science and Engineering: B172(2): 177-182
Verma, A.; Yadav, A.K.; Khatun, N.; Kumar, S.; Jangir, R.; Srihari, V.; Reddy, V.R.; Liu, S.W.; Biring, S.; Sen, S. 2018: Structural, dielectric and ferroelectric studies of thermally stable and efficient energy storage ceramic materials: (Na0.5-K Bi0.5-la )Ti O3. Ceramics International 44(16): 20178-20186
Swain, S.; Kumar, P. 2016: Structural, dielectric and ferroelectric study of (1−ϕ)(NBT–KNN)–ϕSBex T ceramics. Journal of Physics and Chemistry of Solids 98: 59-64
Kumar, M.; Garg, A.; Kumar, R.; Bhatnagar, M. 2008: Structural, dielectric and ferroelectric study of Ba0.9Sr0.1Zrx Ti1−x O3 ceramics prepared by the sol–gel method. Physica B: Condensed Matter 403(10-11): 1819-1823
Sharma, S.; Patel, R.; Prakash, C.; Kumar, P. 2011: Structural, dielectric and ferroelectric study of microwave sintered lanthanum substituted Ba Ti O3 ceramics. Materials Chemistry and Physics 130(1-2): 191-195
Şaşmaz Kuru, T.; Kuru, M.; Bağcı, S. 2018: Structural, dielectric and humidity properties of Al-Ni-Zn ferrite prepared by co-precipitation method. Journal of Alloys and Compounds 753: 483-490
Hajra, S.; Sahoo, S.; Das, R.; Choudhary, R. 2018: Structural, dielectric and impedance characteristics of (Bi0.5Na0.5)Ti O3-Ba Ti O3 electronic system. Journal of Alloys and Compounds 750: 507-514
Nath, S.; Barik, S.K.; Choudhary, R.; Barik, S.K. 2017: Structural, dielectric and impedance characteristics of (Sm 0.5 Li 0.5 )(Fe 0.5 V 0.5 )O 3 multiferroics. Physics Letters A 381(27): 2174-2180
Acharya, T.; Choudhary, R. 2016: Structural, dielectric and impedance characteristics of Co Ti O 3. Materials Chemistry and Physics 177: 131-139
Behera, B.; Nayak, P.; Choudhary, R. 2009: Structural, dielectric and impedance properties of Na Ca2V5O15 ceramics. Current Applied Physics 9(1): 201-205
Purohit, V.; Choudhary, R. 2019: Structural, dielectric and impedance properties of lead-free Bi(Sr0.5Ti0.5)O3 ceramic. Materials Science and Engineering: B243: 30-37
Coondoo, I.; Panwar, N.; Rafiq, M.A.; Puli, V.S.; Rafiq, M.N.; Katiyar, R.S. 2014: Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10)Fe0.95Sc0.05O3 [R=La, Nd] ceramics. Ceramics International 40(7): 9895-9902
Mohanty, B.; Parida, B.; Parida, R. 2020: Structural, dielectric and magnetic behavior of BST modified rare earth ortho-ferrite la Fe O3. Ceramics International 46(10): 16502-16509
Awasthi, R.R.; Asokan, K.; Das, B. 2020: Structural, dielectric and magnetic domains properties of Mn‐doped Bi Fe O 3 materials. International Journal of Applied Ceramic Technology 17(3): 1410-1421
Kumari, N.; Kumar, V.; Singh, S.K. 2015: Structural, dielectric and magnetic investigations on Al3+ substituted Zn-ferrospinels. RSC Advances 5(47): 37925-37934
Piracha, M.I.; Murtaza, G.; Ahmed, M.; Farid, G.; Abdullah, M.; Sharif, S. 2021: Structural, dielectric and magnetic manifestation in Ba M/PEEK nanocomposite for X band shielding blocks. Ceramics International 47(4): 4551-4562
Puri, M.; Bahel, S.; Raevski, I.; Narang, S.B. 2016: Structural, dielectric and magnetic properties of (Pb1−Ca )(Fe0.5Nb0.5)O3 solid solution ceramics. Journal of Magnetism and Magnetic Materials 407: 195-200
Abbas, Q.; Murtaza, G.; Muhammad, N.; Ishfaq, M.; Iqbal, H.; Asad, A.; Ashraf, G.A.; Iqbal, M.Z. 2020: Structural, dielectric and magnetic properties of (Zn Fe2O4/Polystyrene) nanocomposites synthesized by micro-emuslion technique. Ceramics International 46(5): 5920-5928