The Comparison of Partial Least Squares Regression, Principal Component Regression and Ridge Regression with Multiple Linear Regression for Predicting Pm10 Concentration Level Based on Meteorological Parameters
Polat, E.; Gunay, S.
Journal of Data Science: 663-692
2021
ISSN/ISBN: 1680-743X Accession: 088342966
PDF emailed within 1 workday: $29.90
Related References
Yaroshchyk, P.; Death, D.L.; Spencer, S.J. 2012: Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS J. Anal. At. Spectrom. 27(1): 92-98Sim, S.F.; Chai, M.X.L.; Jeffrey Kimura, A.L. 2018: Prediction of Lard in Palm Olein Oil Using Simple Linear Regression (SLR), Multiple Linear Regression (MLR), and Partial Least Squares Regression (PLSR) Based on Fourier-Transform Infrared (FTIR) Journal of Chemistry 2018: 1-8
Hsu YungHeng; Lin WenShin; Ho SiuChuen; Kuo BoJein 2007: Comparison of the partial least squares regression, principal component regression, and neural networks models for predicting the crude protein content of brown rice on the near-infrared spectral data Crop, Environment and Bioinformatics 4(1): 41-48
Li, B.Y.; Kasemsumran, S.; Yun, H.U.; Liang, Y.Z.; Yukihiro I. 2007: Comparison of performance of partial least squares regression, secured principal component regression, and modified secured principal component regression for determination of human serum albumin, γ-globulin and glucose in buffer solutions and in vivo blood glucose quantification by near-infrared spectroscopy Analytical and Bioanalytical Chemistry 387(2): 603-611
Li, B.-Y.; Kasemsumran, S.; Hu, Y.; Liang, Y.-Z.; Ozaki, Y. 2007: Comparison of performance of partial least squares regression, secured principal component regression, and modified secured principal component regression for determination of human serum albumin, gamma-globulin and glucose in buffer solutions and in vivo blood glucose quantification by near-infrared spectroscopy Analytical and Bioanalytical Chemistry 387(2): 603-611
Schumann, S.; Nolte, L.-P.; Zheng, G. 2013: Comparison of partial least squares regression and principal component regression for pelvic shape prediction Journal of Biomechanics 46(1): 197-199
Qin, L.T.; Liu, S.S.; Liu, H.L.; Juan, T.O.N.G. 2009: Comparative multiple quantitative structure―retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques Journal of Chromatography 1216(27): 5302-5312
Qin, L.-T.; Liu, S.-S.; Liu, H.-L.; Tong, J. 2009: Comparative multiple quantitative structure-retention relationships modeling of gas chromatographic retention time of essential oils using multiple linear regression, principal component regression, and partial least squares techniques Journal of Chromatography. a 1216(27): 5302-5312
Vigneau, E.; Bertrand, D.; Qannari, E.M. 1996: Application of latent root regression for calibration in near-infrared spectroscopy. Comparison with principal component regression and partial least squares Chemometrics and Intelligent Laboratory Systems 35(2): 231-238
Haan, C. T.; Allen, D M. 1972: Comparison of multiple regression and principal component regression for predicting water yields in Kentucky Water Resources Research 8(6): 1593-1596
Deconinck, E.; Zhang, M.H.; Petitet, F.; Dubus, E.; Ijjaali, I.; Coomans, D.; Vander Heyden, Y. 2008: Boosted regression trees, multivariate adaptive regression splines and their two-step combinations with multiple linear regression or partial least squares to predict blood-brain barrier passage: a case study Analytica Chimica Acta 609(1): 13-23
Enke, W. 1984: Ein adaptives Regressionsmodell-lernende, lineare, multiple Regression - Modèle adaptatif de régression ― une régression avec apprentissage, linéaire, multiple - An adaptive regression model ― learning, linear, multiple regression Zeitschrift für Meteorologie 34(2): 66-74
Mevik, B.H.; Cederkvist, H.R. 2004: Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR) Journal of Chemometrics 18(9): 422-429
Liu, Z.-y.; Huang, J.-f.; Shi, J.-j.; Tao, R.-x.; Zhou, W.; Zhang, L.-L. 2007: Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression Journal of Zhejiang University. Science. B 8(10): 738-744
Boyd, M.; Porth, B.; Porth, L.; Seng Tan, K.; Wang, S.; Zhu, W. 2020: The Design of Weather Index Insurance Using Principal Component Regression and Partial Least Squares Regression: the Case of Forage Crops North American Actuarial Journal 24(3): 355-369
Wentzell, P.D.; Vega Montoto, L. 2003: Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures Chemometrics and Intelligent Laboratory Systems 65(2): 257-279
Eriksson, S.; Lundquist, A.; Gustafson, Y.; Lundin-Olsson, L. 2009: Comparison of three statistical methods for analysis of fall predictors in people with dementia: negative binomial regression (NBR), regression tree (RT), and partial least squares regression (PLSR) Archives of Gerontology and Geriatrics 49(3): 383-389
Cai, T; Ju, C; Yang, X 2009: Comparison of Ridge Regression and Partial Least Squares Regression for Estimating Above-Ground Biomass with Landsat Images and Terrain Data in Mu Us Sandy Land, China Arid Land Research and Management 23(3): 248-261
Pralle, R.S.; Weigel, K.W.; White, H.M. 2018: Predicting blood β-hydroxybutyrate using milk Fourier transform infrared spectrum, milk composition, and producer-reported variables with multiple linear regression, partial least squares regression, and artificial neural network Journal of Dairy Science 101(5): 4378-4387
Bautista, R.D.; Aberásturi, F.J.; Jiménez, A.I.; Jiménez, F. 1996: Simultaneous spectrophotometric determination of drugs in pharmaceutical preparations using multiple linear regression and partial least-squares regression, calibration and prediction methods Talanta 43(12): 2107-2115