The braid groups of the projective plane and the Fadell–Neuwirth short exact sequence
Gonçalves, D.L.; Guaschi, J.
Geometriae Dedicata 130(1): 93-107
2007
ISSN/ISBN: 0046-5755 Accession: 088679401
PDF emailed within 1 workday: $29.90
Related References
Gonçalves, D.L.; Guaschi, J. 2010: Braid groups of non-orientable surfaces and the Fadell–Neuwirth short exact sequence Journal of Pure and Applied Algebra 214(5): 667-677Gonçalves, D.L.; Guaschi, J. 2005: The Braid Group and a Generalisation of the Fadell Neuwirth Short Exact Sequence Journal of Knot Theory and Its Ramifications 14(3): 375-403
Gonçalves, D.L.; Guaschi, J. 2011: The lower central and derived series of the braid groups of the projective plane Journal of Algebra 331(1): 96-129
Zhicheng, G.A.O.; Jianyu, W.A.N.G. 2004: Exact enumeration of rooted 3-connected triangular maps on the projective plane Discrete Appl. Math 141(1-3): 149-159
Laver, R. 1996: Braid group actions on left distributive structures, and well orderings in the braid groups Journal of Pure and Applied Algebra 108(1): 81-98
Rabinovich, S.; Shmueli, U.; Stein, Z.; Shashua, R.; Weiss, G.H. 1991: Exact random-walk models in crystallographic statistics. VI, P.D.F.'s of |E| for all plane groups and most space groups Acta Crystallographica. Section A, Foundations of Crystallography 47: 328-335
Ballico, E.; Brambila, L.; Russo, B. 1998: Exact Sequence of Stable Vector Bundles on Projective Curves Mathematische Nachrichten 194(1): 5-11
Myasnikov, A.; Shpilrain, V.; Ushakov, A. 2006: Random Subgroups of Braid Groups : An Approach to Cryptanalysis of a Braid Group Based Cryptographic Protocol Lect. Notes Comput. Sci: 302-314
Rabinovich, S.; Shmueli, U.; Stein, Z.; Shashua, R.; Weiss, G.H. 1991: Exact random-walk models in crystallographic statistics. VI. P.D.F.'s of magnitude of [E] for all plane groups and most space groups Acta Crystallographica. Section A Foundations of Crystallography 47: 328-335
Berceanu, B.; Papadima, Å. 2009: Universal Representations of Braid and Braid-Permutation Groups Journal of Knot Theory and Its Ramifications 18(7): 999-1019
Ho, C.Y. 1994: Subplanes of a tactical decomposition and singer groups of a projective plane Geometriae Dedicata 53(3): 307-326
Biliotti, M.; Korchmaros, G. 1986: Collineation Groups which are Primitive on an Oval of a Projective Plane of Odd Order Journal of the London Mathematical Society s2-33(3): 525-534
Biliotti, M. 1999: Collineation Groups Preserving a Unital in a Projective Plane of Order m2 with m 1(4) Journal of the London Mathematical Society 60(2): 589-606
Biliotti, M.; Korchmaros, G. 1989: Collineation groups preserving a unital of a projective plane of odd order Journal of Algebra 122(1): 130-149
Anjos, S.; Pinsonnault, M. 2013: The homotopy Lie algebra of symplectomorphism groups of 3-fold blow-ups of the projective plane Mathematische Zeitschrift 275(1-2): 245-292
Liu, H.; Tang, S.; Lei, D.; Zhu, Q.; Sui, H.; Zhang, G.; Li, C. 2020: Accurate estimation of feature points based on individual projective plane in video sequence The Visual Computer 36(10-12): 2091-2103
Bujalance, E.; Cirre, F.J.; Gamboa, J.M. 2005: Automorphism groups of the real projective plane with holes and their conjugacy classes within its mapping class group Mathematische Annalen 332(2): 253-275
Bardakov, V.G. 2005: Extending Representations of Braid Groups to the Automorphism Groups of Free Groups Journal of Knot Theory and Its Ramifications 14(8): 1087-1098
Simms, D.J. 1971: A short proof of Bargmann's criterion for the lifting of projective representations of Lie groups Reports on Mathematical Physics 2(4): 283-287
RodrÃguez, C.; Franco, L.; Barja, J. 1987: An exact sequence in the homology of groups Communications in Algebra 15(4): 827-844