The exact sequence of a localization for Witt groups. II. Numerical invariants of odd-dimensional surgery obstructions
Pardon, W.
Pacific Journal of Mathematics 102(1): 123-170
1982
ISSN/ISBN: 0030-8730 Accession: 088763046
PDF emailed within 1 workday: $29.90
Related References
Ton-That, T. 1999: Poincaré-Birkhoff-Witt theorems and generalized Casimir invariants for some infinite-dimensional Lie groups: i Journal of Physics A: Mathematical and General 32(32): 5975-5991Tonthat, T. 2005: Poincaré-Birkhoff-Witt theorems and generalized Casimir invariants for some infinite-dimensional Lie groups: II Journal of Physics. A, Mathematical and General 38(4): 907-919
Cegarra, A.M.; Aznar, E.R. 1986: An exact sequence in the first variable for torsor cohomology: the 2-dimensional theory of obstructions Journal of Pure and Applied Algebra 39: 197-250
Giffen, C. H. 1977: Hasse-Witt invariants for (α, u)-reflexive forms and automorphisms. I: Algebraic K2-valued Hasse-Witt invariants Journal of Algebra 44(2): 434-456
Turull, A.; Vila, N. 1989: On rigid equations for alternating groups and their Hasse-Witt invariants Journal of Algebra 125(2): 431-443
Grenier-Boley, N.; Mahmoudi, M. 2005: Exact Sequences of Witt Groups Communications in Algebra 33(4): 965-986
Lewis, D. 1982: New improved exact sequences of Witt groups Journal of Algebra 74(1): 206-210
Fasel, J.; Srinivas, V. 2009: Chow–Witt groups and Grothendieck–Witt groups of regular schemes Advances in Mathematics 221(1): 302-329
Gupta, B.C.; Ye, Z. 2003: Localization of classical waves in two-dimensional random media: a comparison between the analytic theory and exact numerical simulation Physical Review. E Statistical Nonlinear and Soft Matter Physics 67(3 Part 2): 036606
Benameur, M.; Roy, I. 2015: The Higson–Roe exact sequence and ℓ2 eta invariants Journal of Functional Analysis 268(4): 974-1031
Fomin, A. 2009: Invariants for abelian groups and dual exact sequences Journal of Algebra 322(7): 2544-2565
Jacobson, J. 2012: Finiteness theorems for the shifted Witt and higher Grothendieck–Witt groups of arithmetic schemes Journal of Algebra 351(1): 254-278
Gille, S. 2007: A Gersten Witt complex for hermitian Witt groups of coherent algebras over schemes, I: Involution of the first kind Compositio Mathematica 143(2): 271-289
Ray, J.R.; Reid, J.L. 1979: Exact time-dependent invariants for n -dimensional systems Physics Letters A 74(1-2): 23-25
Wielgosz, C.; Debordes, O. 1990: Exact or quasi-exact numerical results for two-dimensional harmonic problems European Journal of Mechanics. A. Solids 9(5): 453-476
Pereira, L.G.; Goedert, J. 1992: One-dimensional nonautonomous dynamical systems with exact transcendental invariants Journal of Mathematical Physics 33(8): 2682-2687
Mishra, S.C.; Chand, F. 2006: Construction of exact dynamical invariants of two-dimensional classical system Pramana 66(3): 601-607
Struckmeier; Riedel 2000: Exact invariants for a class of three-dimensional time-dependent classical hamiltonians Physical Review Letters 85(18): 3830-3833
Kumar, N.; Chand, F.; Mishra, S.C. 2014: Exact fourth order invariants for one-dimensional time-dependent Hamiltonian systems Indian Journal of Physics 89(7): 709-712
Clark, A.; Goldstein, R. 2005: Stability of Numerical Invariants in Free Groups Communications in Algebra 33(11): 4097-4104