Establishment of an LC-MS/MS Method for the Determination of 45 Pesticide Residues in Fruits and Vegetables from Fujian, China

Zheng, K.; Wu, X.; Chen, J.; Chen, J.; Lian, W.; Su, J.; Shi, L.

Molecules 27(24)


ISSN/ISBN: 1420-3049
PMID: 36557806
Accession: 089808927

Download citation:  

Article/Abstract emailed within 1 workday
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Pesticide residues in food have become an important factor seriously threatening human health. Therefore, this study was conducted to determine the pesticide residues in fruits and vegetables commonly found in Fujian, China, with the aim of constructing a simple and rapid method for pesticide residue monitoring. We collected 5607 samples from local markets and analyzed them for the presence of 45 pesticide residues. A fast, easy, inexpensive, effective, robust, and safe (QuEChERS) multi-residue extraction method followed by liquid chromatography equipped with triple-quadrupole mass spectrometry (LC-MS/MS) was successfully established. This 12-min-long analytical method detects and quantifies pesticide residues with acceptable validation performance parameters in terms of sensitivity, selectivity, linearity, the limit of quantification, accuracy, and precision. The linear range of the calibration curves ranged from 5 to 200 mg/L, the limits of detection for all pesticides ranged from 0.02 to 1.90 μg/kg, and the limits of quantification for the pesticides were 10 μg/kg. The recovery rates for the three levels of fortification ranged from 72.0% to 118.0%, with precision values (expressed as RSD%) less than 20% for all of the investigated analytes. The results showed that 726 (12.95%) samples were contaminated with pesticide residues, 94 (1.68%) samples exceeded the maximum residue limit (MRL) of the national standard (GB 2763-2021, China), 632 (11.23%) samples were contaminated with residues below the MRL, and 4881 (87.05%) samples were pesticide residue-free. In addition, the highest number of multiple pesticide residues was observed in bananas and peppers, which were contaminated with acetamiprid, imidacloprid, pyraclostrobin, and thiacloprid.