The value of enhanced multiparameteric MRi diagnostic model for preoperatively predicting surgical methods of inferior vena cava in patients with renal tumors and inferior vena cava tumor thrombus

Pei, X.; Lu, M.; Liu, Z.; Liu, B.; Deng, Y.; Yuan, H.; Ma, L.

Bmc Medical Imaging 23(1): 86

2023


ISSN/ISBN: 1471-2342
PMID: 37355601
Accession: 090326201

Download citation:  
Text
  |  
BibTeX
  |  
RIS

Article/Abstract emailed within 1 workday
Payments are secure & encrypted
Powered by Stripe
Powered by PayPal

Abstract
Inferior vena cava tumor thrombus (IVCTT) invading the IVC wall majorly affects the surgical method choice and prognosis in renal tumors. Enhanced multiparameteric MRI plays an important role in preoperative evaluation. In this work, an MRI-based diagnostic model for IVCTT was established so as to guide the preoperative decisions. Preoperative MR images of 165 cases of renal tumors with IVCTT were retrospectively analyzed, and imaging indicators were analyzed, including IVCTT morphology and Mayo grade, IVCTT diameter measurements, bland thrombosis, primary MRI-based diagnosis of renal tumor, and involvement of contralateral renal vein. The indicators were analyzed based on intraoperative performance and resection scope of the IVC wall. Multivariate logistic regression analysis was used to establish the diagnostic model. The morphological classification of the IVCTT, primary MRI-based diagnosis of renal tumors, maximum transverse diameter of IVCTT, and length of the bland thrombus were the main indexes predicting IVC wall invasion. The MRI-based diagnostic model established according to these indexes had good diagnostic efficiency. The prediction probability of 0.61 was set as the cutoff value. The area under the curve of the test set was 0.88, sensitivity was 0.79, specificity was 0.85, and prediction accuracy was 0.79 under the optimal cutoff value. The preoperative MRI-based diagnostic model could reliably predict IVC wall invasion, which is helpful for better prediction of IVC-associated surgical operations.